Skip to main content
Log in

Adsorption of Te clusters on tellurene and \(MoS_{2}\) monolayers: structural, electronic, and optical properties

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Adsorption of small Te clusters on tellurene and \(MoS_{2}\) monolayers have been studied within density functional framework. With adsorption on 2D monolayers, Te clusters show distortion in cluster geometry along with local distortions in the monolayer. Adsorption energy is found to be higher in \(Te_{n}\$tellurene\) as compared to \(Te_{n}\$MoS_{2}\), suggesting that there exists a strong interaction between Te clusters and tellurene substrate. Adsorption of clusters on monolayers results in the modification of the effective band gap of these monolayers. Analysis of the charge density difference profile shows that a certain amount of charge is transferred from the clusters to the substrates. This results in the redistribution of the charge. Our optical calculations for the interband transitions show that Te cluster creates quantum states inside of monolayers, which leads to increasing optical absorption of the system. Additional low-intensity absorption peak, in addition to the main peak, has been noticed in cluster-adsorbed \(MoS_{2}\) monolayer for E \(\parallel \) C. The real part of the dielectric function reveals the existence of plasmon frequencies. We conclude that the cluster adsorption on different monolayers alters the electronic and dielectric properties of monolayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Ju W, Li T, Su X, Li H, Li X, Ma D (2017) Au cluster adsorption on perfect and defective MoS2 monolayers: structural and electronic properties. Phys Chem Chem Phys 19(31):20735–20748

    Article  CAS  PubMed  Google Scholar 

  2. Jones AM, Yu H, Ghimire NJ, Wu S, Aivazian G, Ross JS, Zhao B, Yan J, Mandrus DG, Xiao D, Yao W, Xu X (2013) Optical generation of excitonic valley coherence in monolayer WSe2. Nat Nanotechnol 8:634–638

    Article  CAS  PubMed  Google Scholar 

  3. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin \({\rm mos }_{2}\): a new direct-gap semiconductor. Phys Rev Lett 105

  4. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712

    Article  CAS  PubMed  Google Scholar 

  5. Ben Aziza Z, Pierucci D, Henck H, Silly MG, David C, Yoon M, Sirotti F, Xiao K, Eddrief M, Girard J-C, Ouerghi A (2017) Tunable quasiparticle band gap in few-layer GaSe/graphene van der Waals heterostructures. Phys Rev B 96

  6. Jie W, Chen X, Li D, Xie L, Hui YY, Lau SP, Cui X, Hao J (2014) Layer-dependent nonlinear optical properties and stability of non-centrosymmetric modification in few-layer GaSe sheets. Angew Chem Int Ed 54:1185–1189

    Article  Google Scholar 

  7. Huang S, Tatsumi Y, Ling X, Guo H, Wang Z, Watson G, Puretzky AA, Geohegan DB, Kong J, Li J, Yang T, Saito R, Dresselhaus MS (2016) In-plane optical anisotropy of layered gallium telluride. ACS Nano 10:8964–8972

    Article  CAS  PubMed  Google Scholar 

  8. Mudd GW, Svatek SA, Ren T, Patanè A, Makarovsky O, Eaves L, Beton PH, Kovalyuk ZD, Lashkarev GV, Kudrynskyi ZR, Dmitriev AI (2013) Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement. Adv Mater 25:5714–5718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mudd GW, Svatek SA, Hague L, Makarovsky O, Kudrynskyi ZR, Mellor CJ, Beton PH, Eaves L, Novoselov KS, Kovalyuk ZD, Vdovin EE, Marsden AJ, Wilson NR, Patanè A (2015) High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures. Adv Mater 27:3760–3766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sang DK, Wen B, Gao S, Zeng Y, Meng F, Guo Z, Zhang H (2019) Electronic and optical properties of two-dimensional tellurene: from first-principles calculations. Nanomater 9:1075

  11. Fan T, Xie Z, Huang W, Li Z, Zhang H (2019) Two-dimensional non-layered selenium nanoflakes: facile fabrications and applications for self-powered photo-detector. Nanotechnol 30:114002

    Article  CAS  Google Scholar 

  12. Wang F, Li J, Wang F, Shifa TA, Cheng Z, Wang Z, Xu K, Zhan X, Wang Q, Huang Y, Jiang C, He J (2015) Enhanced electrochemical h2evolution by few-layered metallic WS2(1–x)se2xnanoribbons. Adv Funct Mater 25:6077–6083

    Article  CAS  Google Scholar 

  13. Wu J, Mao N, Xie L, Xu H, Zhang J (2015) Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew Chem Int Ed 54:2366–2369

    Article  CAS  Google Scholar 

  14. Xia F, Wang H, Jia Y (2014) Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun 5

  15. Smith B, Vermeersch B, Carrete J, Ou E, Kim J, Mingo N, Akinwande D, Shi L (2016) Temperature and thickness dependences of the anisotropic in-plane thermal conductivity of black phosphorus. Adv Mater 29:1603756

    Article  Google Scholar 

  16. Qiao J, Pan Y, Yang F, Wang C, Chai Y, Ji W (2018) Few-layer tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties. Sci Bull 63:159–168

    Article  CAS  Google Scholar 

  17. Sharma T, Sharma R, Tamboli RA, Kanhere DG (2019) Ab initio investigation of structural and electronic properties of selenium and tellurium clusters. The Euro Phys J B 92:51

    Article  Google Scholar 

  18. Sharma T, Sharma R (2020) Effect of transition metal doping on the structural, magnetic, and vibrational properties of ten clusters: a DFT study. J Nanoparticle Res 22:202

    Article  CAS  Google Scholar 

  19. Sharma T, Sharma R, Kanhere DG (2022) A DFT study of SenTen clusters. Nanoscale Adv 4:1464–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharma T, Thakur R, Sharma R (2021) Structural, electronic and dielectric properties of tellurium 1-D nanostructures: a DFT study. Appl Phys A 128:41

    Article  Google Scholar 

  21. Yao J, Chen F, Li J, Du J, Wu D, Tian Y, Zhang C, Yang J, Li X, Lin P (2021) A high-performance short-wave infrared phototransistor based on a 2D tellurium/MoS2 van der Waals heterojunction. J Mater Chem C 9:13123–13131

    Article  CAS  Google Scholar 

  22. Moradian R, Shahrokhi M, Charganeh SS, Moradian S (2012) Structural, magnetic, electronic and optical properties of iron cluster (fe6) decorated boron nitride sheet. Phys E: Low-dim Syst Nanostruct 46:182–188

    Article  CAS  Google Scholar 

  23. Mao Y, Yuan J, Zhong J (2008) Density functional calculation of transition metal adatom adsorption on graphene. J Phys: Condens Matter 20(11):115209

    PubMed  Google Scholar 

  24. Cao C, Wu M, Jiang J, Cheng H-P (2010) Transition metal adatom and dimer adsorbed on graphene: induced magnetization and electronic structures. Phys Rev B 81(20)

  25. Błoński P, Hafner J (2012) Pt3 and pt4 clusters on graphene monolayers supported on a ni(111) substrate: relativistic density-functional calculations. The J Chem Phys 137

  26. Sahoo S, Gruner ME, Khanna SN, Entel P (2014) First-principles studies on graphene-supported transition metal clusters. The J Chem Phys 141:074707

  27. Guo N, Lu R, Liu S, Ho GW, Zhang C (2014) High catalytic activity of au clusters supported on ZnO nanosheets. The J Phys Chem C 118:21038–21041

    Article  CAS  Google Scholar 

  28. Xu D, Yj Liu, Jx Zhao, Cai Qh, Xz Wang (2014) Theoretical study of the deposition of Pt clusters on defective hexagonal boron nitride (h-BN) sheets: morphologies, electronic structures, and interactions with O. The J Phys Chem C 118:8868–8876

    Article  CAS  Google Scholar 

  29. Jia J, Bendounan A, Kotresh HMN, Chaouchi K, Sirotti F, Sampath S, Esaulov VA (2013) Selenium adsorption on au(111) and ag(111) surfaces: adsorbed selenium and selenide films. The J Phys Chem C 117:9835–9842

    Article  CAS  Google Scholar 

  30. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  31. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  33. Chakraborty D, Berland K, Thonhauser T (2020) Next-generation nonlocal van der Waals density functional. J Chem Theory Comput 16(9):5893–5911 (PMID: 32786912)

    Article  CAS  PubMed  Google Scholar 

  34. Wang XH, Wang DW, Yang AJ, Koratkar N, Chu JF, Lv PL, Rong MZ (2018) Effects of adatom and gas molecule adsorption on the physical properties of tellurene: a first principles investigation. Phys Chem Chem Phys 20(6):4058–4066

    Article  CAS  PubMed  Google Scholar 

  35. Shi H, Pan H, Zhang Y-W, Yakobson BI (2013) Quasiparticle band structures and optical properties of strained monolayer MoS\({}_{2}\) and WS\({}_{2}\). Phys Rev B 87

  36. Molina-Sánchez A, Wirtz L (2011) Phonons in single-layer and few-layer MoS\({}_{2}\) and WS\({}_{2}\). Phys Rev B 84

Download references

Acknowledgements

The authors gratefully acknowledge UGC for providing the computational HPC facility in the Department of Physics, HPU Summer Hill, Shimla.

Author information

Authors and Affiliations

Authors

Contributions

In the manuscript preparation, all authors have contributed significantly. Tamanna Sharma has carried out the work. She was involved with conceptualization, software application, data curation, data analysis, validation, investigation, and manuscript preparation. Sheetal Sharma has taken care of data analysis and manuscript preparation. Munish Sharma was involved in conceptualization, data analysis, and curation. Raman Sharma was involved in supervision, conceptualization, formal analysis, project administration, and acquiring resources.

Corresponding author

Correspondence to Tamanna Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, T., Sharma, S., Sharma, M. et al. Adsorption of Te clusters on tellurene and \(MoS_{2}\) monolayers: structural, electronic, and optical properties. J Nanopart Res 26, 75 (2024). https://doi.org/10.1007/s11051-024-05968-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05968-7

Keywords

Navigation