Skip to main content

Advertisement

Log in

Effect of transition metal doping on the structural, magnetic, and vibrational properties of Ten clusters: a DFT study

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Transition metal chalcogenides (TMCs) nanomaterials have become of great scientific interest due to unusual physical and chemical properties and the useful technological applications. Here, we have studied the effect of different transition metal (TM) doping on the structural, electronic, magnetic, and vibrational properties of Ten (n = 6, 8, 10, and 12) clusters using density functional theory calculations. We notice that out of different doped clusters, the one with n = 10 exhibits the lowest symmetry. However, all the doped clusters have planner structure similar to pristine Ten clusters. The calculation of vibrational frequencies along with Raman spectra reveals the unstable nature of TM@Te6 clusters reflected via the observation of imaginary vibrational frequencies. Interestingly, we observe that binding energy per atom for TM@Ten clusters is more than Ten and the eigenvalue spectrum of TM@Ten reveals that the transition metal energy levels lie between Te energy levels. The accumulation of charge around the transition metals indicates their more electronegative nature. Additionally, significant quenching of magnetic moment is observed in Ni-doped Ten clusters. In order to understand the microscopic origin of magnetic properties, we have done a detailed analysis of local magnetic moment associated with different atoms along with projected density of states (PDOS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham JA, Pagare G, Sanyal SP (2015) Electronic structure, electronic charge density, and optical properties analysis of GdX3 (X = In, Sn, Tl, and Pb) compounds: DFT calculations. Indian Journal of Materials Science 2015:1–11

    Article  Google Scholar 

  • Akola J, Jones RO (2012) Structure and dynamics in amorphous tellurium and Ten clusters: a density functional study. Physical Review B, vol 85

  • Alonso JA (2000) Electronic and atomic structure, and magnetism of transition-metal clusters. Chem Rev 100:637–678

    Article  CAS  Google Scholar 

  • Alparone A (2012) Density functional theory Raman spectra of cyclic selenium clusters sen (n = 5–12). Computational and Theoretical Chemistry 988:81–85

    Article  CAS  Google Scholar 

  • Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371–423

    Article  CAS  Google Scholar 

  • Calleja M, Rey C, Alemany MMG, Gallego LJ, Ordejón P, Sánchez-Portal D, Artacho E, Soler JM (1999) Self-consistent density-functional calculations of the geometries, electronic structures, and magnetic moments of ni-al clusters. Phys Rev B 60:2020–2024

    Article  CAS  Google Scholar 

  • Gao M-R, Gao Q, Jiang J, Cui C-H, Yao W-T, Yu S-H (2011) A methanol-tolerant Pt/CoSe2 nanobelt cathode catalyst for direct methanol fuel cells. Angewandte Chemie International Edition 50:4905–4908

    Article  CAS  Google Scholar 

  • Gao M-R, Jiang J, Yu S-H (2011) Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR). Small 8:13–27

    Article  Google Scholar 

  • Gao M-R, Liu S, Jiang J, Cui C-H, Yao W-T, Yu S-H (2010) In situ controllable synthesis of magnetite nanocrystals/CoSe2 hybrid nanobelts and their enhanced catalytic performance. J Mater Chem 20(42):9355

    Article  CAS  Google Scholar 

  • Gao M-R, Xu Y-F, Jiang J, Yu S-H (2013) Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev 42 (7):2986

    Article  CAS  Google Scholar 

  • Glass CW, Oganov AR, Hansen N (2006) USPEX–evolutionary crystal structure prediction. Comput Phys Commun 175:713–720

    Article  CAS  Google Scholar 

  • Gresty NC, Takabayashi Y, Ganin AY, McDonald MT, Claridge JB, Giap D, Mizuguchi Y, Takano Y, Kagayama T, Ohishi Y, Takata M, Rosseinsky MJ, Margadonna S, Prassides K (2009) Structural phase transitions and superconductivity in Fe1+δ Se0.57 Te0.43 at ambient and elevated pressures. J Am Chem Soc 131:16944–16952

    Article  CAS  Google Scholar 

  • de Heer WA (1993) The physics of simple metal clusters: experimental aspects and simple models. Rev Mod Phys 65:611–676

    Article  Google Scholar 

  • Hsu F-C, Luo J-Y, Yeh K-W, Chen T-K, Huang T-W, Wu PM, Lee Y-C., Huang Y-L., Chu Y-Y., Yan D-C., Wu M-K. (2008) Superconductivity in the PbO-type structure -FeSe. Proc Natl Acad Sci 105:14262–14264

    Article  CAS  Google Scholar 

  • Knickelbein MB (2001) Experimental observation of superparamagnetism in manganese clusters. Phys Rev Lett 86:5255–5257

    Article  CAS  Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  • Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  • Lai C-H, Lu M-Y, Chen L-J (2012) Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J Mater Chem 22(1):19–30

    Article  CAS  Google Scholar 

  • Lu Z-H, Jiang L, Xu Q (2009) Infrared spectra and density functional theory calculations of the tantalum and niobium carbonyl dinitrogen complexes. J Chem Phys 131: 034512

    Article  Google Scholar 

  • Lu Z-H, Jiang L, Xu Q (2010) A combined experimental and theoretical study of iron dinitrogen complexes: Fe(n2), fe(NN)x(x = 1-5), and fe(NN)3-. J Phys Chem A 114:2157–2163

    Article  CAS  Google Scholar 

  • Oganov AR, Lyakhov AO, Valle M (2011) How evolutionary crystal structure prediction works–and why. Acc Chem Res 44:227–237

    Article  CAS  Google Scholar 

  • Pan BC (2002) Geometric structures, electronic properties, and vibrational frequencies of small tellurium clusters. Phys Rev B, vol 65

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple [phys. rev. lett. 77, 3865 (1996)]. Phys Rev Lett 78:1396–1396

    Article  CAS  Google Scholar 

  • Puthussery J, Seefeld S, Berry N, Gibbs M, Law M (2011) Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics. J Am Chem Soc 133:716–719

    Article  CAS  Google Scholar 

  • Reddy B, Khanna S, Deevi S (2001) Electronic structure and magnetism in (FeAl)n (n\(\leqslant \)6) clusters. Chem Phys Lett 333:465–470

    Article  CAS  Google Scholar 

  • Rexer EF, Jellinek J, Krissinel EB, Parks EK, Riley SJ (2002) Theoretical and experimental studies of the structures of 12-, 13-, and 14-atom bimetallic nickel/aluminum clusters. J Chem Phys 117:82–94

    Article  CAS  Google Scholar 

  • Samanta PN, Das KK (2015) Electronic transport properties of thiol-ended ge4, sn2ge2, and sn4 nanoclusters: A DFT–NEGF study. Comput Mater Sci 110:182–190

    Article  CAS  Google Scholar 

  • Sharma T, Sharma R, Tamboli RA, Kanhere DG (2019) Ab initio investigation of structural and electronic properties of selenium and tellurium clusters. Eur Phys J B, vol 92

  • Wang M, Huang X, Du Z, Li Y (2009) Structural, electronic, and magnetic properties of a series of aluminum clusters doped with various transition metals. Chem Phys Lett 480:258–264

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to University Grants Commission for providing HPC cluster facility in the Department of Physics, Himachal Pradesh University, Summer Hill, Shimla-05 through FIST grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamanna Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, T., Sharma, R. Effect of transition metal doping on the structural, magnetic, and vibrational properties of Ten clusters: a DFT study. J Nanopart Res 22, 202 (2020). https://doi.org/10.1007/s11051-020-04916-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-04916-5

Keywords

Navigation