Skip to main content
Log in

Structural, electronic and dielectric properties of Tellurium 1-D nanostructures : a DFT study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The size- and diameter-dependent structural, electronic and dielectric properties of tellurium 1-D nanowire (Te-NW) and tellurium nanotubes (Te-NTs) with trigonal and hexagonal cross sections have been calculated using density functional theory . The nanostructures having trigonal cross sections are progressively more stable than hexagonal Te-NTs with decreasing binding energy. We further find that bandgap of trigonal cross section is larger as compare to the hexagonal one. Dielectric properties of these materials are strongly dependent on the direction of polarization of the incident light. The peaks in absorption spectrum come from the transition between the conduction and valence band states. The real part of dielectric function reveals the existence of plasma frequency which indicates that the materials are behaving like dielectric ones in the parallel polarization direction. It is anticipated that these results may point towards new possibilities in the development of optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Grosshans, G.V. Assche, J. Wenger, R. Brouri, N.J. Cerf, P. Grangier, Quantum key distribution using gaussian-modulated coherent states. Nature 421, 238–241 (2003)

    Article  ADS  Google Scholar 

  2. Z.L. Wang, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)

    Article  ADS  Google Scholar 

  3. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nature Mater. 4, 455–459 (2005)

    Article  ADS  Google Scholar 

  4. Y. Wu, R. Fan, P. Yang, Block-by-block growth of single-crystalline si/SiGe superlattice nanowires. Nano Lett. 2, 83–86 (2002)

    Article  ADS  Google Scholar 

  5. Y. Guo, S. Wang, Y. Jia, W.-S. Su, Structural, electronic, and optical properties of \(\alpha\)-te tubular nanostructures: A first-principles study. APL Mater. 7, 031105 (2019)

    Article  ADS  Google Scholar 

  6. Z. Liu, Z. Hu, J. Liang, S. Li, Y. Yang, S. Peng, Y. Qian, Size-controlled synthesis and growth mechanism of monodisperse tellurium nanorods by a surfactant-assisted method. Langmuir 20, 214–218 (2004)

    Article  Google Scholar 

  7. P.K. Balguri, D.G.H. Samuel, D.B. Aditya, S.V. Bhaskar, U. Thumu, Enhanced flexural strength of tellurium nanowires/epoxy composites with the reinforcement effect of nanowires. IOP Conf. Ser.: Mater. Sci. Eng. 310, 012157 (2018)

    Article  Google Scholar 

  8. P. Mohanty, T. Kang, B. Kim, J. Park, Synthesis of single crystalline tellurium nanotubes with triangular and hexagonal cross sections. J. Phys. Chem. B 110, 791–795 (2006)

    Article  Google Scholar 

  9. P. Ghosh, M. U. Kahaly, and U. V. Waghmare, “Atomic and electronic structures, elastic properties, and optical conductivity of bulk te and te nanowires: A first-principles study,” Physical Review B, vol. 75, June 2007

  10. G.D. Moon, S. Ko, Y. Xia, U. Jeong, Chemical transformations in ultrathin chalcogenide nanowires. ACS Nano 4, 2307–2319 (2010)

    Article  Google Scholar 

  11. Y. Wang, Z. Tang, P. Podsiadlo, Y. Elkasabi, J. Lahann, N. Kotov, Mirror-like photoconductive layer-by-layer thin films of te nanowires: The fusion of semiconductor, metal, and insulator properties. Adv. Mater. 18, 518–522 (2006)

    Article  Google Scholar 

  12. H.-W. Liang, J.-W. Liu, H.-S. Qian, S.-H. Yu, Multiplex templating process in one-dimensional nanoscale: Controllable synthesis, macroscopic assemblies, and applications. Acc. Chem. Res. 46, 1450–1461 (2013)

    Article  Google Scholar 

  13. J.-W. Liu, J.-H. Zhu, C.-L. Zhang, H.-W. Liang, S.-H. Yu, Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J. Am. Chem. Soc. 132, 8945–8952 (2010)

    Article  Google Scholar 

  14. J.-W. Liu, J. Xu, H.-W. Liang, K. Wang, S.-H. Yu, Macroscale ordered ultrathin telluride nanowire films, and tellurium/telluride hetero-nanowire films. Angewandte Chem. Int. Ed. 51, 7420–7425 (2012)

    Article  Google Scholar 

  15. D. Tsiulyanu, A. Tsiulyanu, H.-D. Liess, I. Eisele, Characterization of tellurium-based films for NO2 detection. Thin Solid Films 485, 252–256 (2005)

    Article  ADS  Google Scholar 

  16. Z.-H. Lin, Z. Yang, H.-T. Chang, Preparation of fluorescent tellurium nanowires at room temperature. Cryst. Growth Des. 8, 351–357 (2008)

    Article  Google Scholar 

  17. T.S. Sreeprasad, A.K. Samal, T. Pradeep, Bending and shell formation of tellurium nanowires induced by thiols. Chem. Mater. 21, 4527–4540 (2009)

    Article  Google Scholar 

  18. Y.-J. Zhu, W.-W. Wang, R.-J. Qi, X.-L. Hu, Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angewandte Chem. Int. Ed. 43, 1410–1414 (2004)

    Article  Google Scholar 

  19. B. Mayers, Y. Xia, Formation of tellurium nanotubes through concentration depletion at the surfaces of seeds. Adv. Mater. 14, 279–282 (2002)

    Article  Google Scholar 

  20. B. Geng, Y. Lin, X. Peng, G. Meng, L. Zhang, Large-scale synthesis of single-crystalline te nanobelts by a low-temperature chemical vapour deposition route. Nanotechnology 14, 983–986 (2003)

    Article  ADS  Google Scholar 

  21. M. Mo, J. Zeng, X. Liu, W. Yu, S. Zhang, Y. Qian, Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Adv. Mater. 14, 1658–1662 (2002)

    Article  Google Scholar 

  22. Q. Wang, G.-D. Li, Y.-L. Liu, S. Xu, K.-J. Wang, J.-S. Chen, Fabrication and growth mechanism of selenium and tellurium nanobelts through a vacuum vapor deposition route. J. Phys. Chem. C 111, 12926–12932 (2007)

    Article  Google Scholar 

  23. Q. Lu, F. Gao, S. Komarneni, Biomolecule-assisted reduction in the synthesis of single-crystalline tellurium nanowires. Adv. Mater. 16, 1629–1632 (2004)

    Article  Google Scholar 

  24. C.J. Hawley, B.R. Beatty, G. Chen, J.E. Spanier, Shape-controlled vapor-transport growth of tellurium nanowires. Cryst. Growth Des. 12, 2789–2793 (2012)

    Article  Google Scholar 

  25. J.-W. Liu, J. Xu, W. Hu, J.-L. Yang, S.-H. Yu, Systematic synthesis of tellurium nanostructures and their optical properties: From nanoparticles to nanorods, nanowires, and nanotubes. ChemNanoMat 2, 167–170 (2015)

    Article  Google Scholar 

  26. A. Kramer, M. L. V. de Put, C. L. Hinkle, and W. G. Vandenberghe, “Tellurium as a successor of silicon for extremely scaled nanowires: a first-principles study,” npj 2D Materials and Applications, vol. 4, May 2020

  27. W. Huang, Y. Zhang, Q. You, P. Huang, Y. Wang, Z. N. Huang, Y. Ge, L. Wu, Z. Dong, X. Dai, Y. Xiang, J. Li, X. Zhang, and H. Zhang, “Enhanced photodetection properties of tellurium@selenium roll-to-roll nanotube heterojunctions,” Small, p. 1900902, Apr. 2019

  28. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)

    Article  ADS  Google Scholar 

  29. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  ADS  Google Scholar 

  30. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  ADS  Google Scholar 

  31. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple [phys. rev. lett. 77, 3865 (1996)]. Phys. Rev. Lett. 78, 1396–1396 (1997)

    Article  ADS  Google Scholar 

  32. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  33. H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Yi, Z. Zhu, X.-L. Cai, J. Cho, The nature of bonding in bulk tellurium composed of one-dimensional helical chains. Inorgan. Chem. 57, 12 (2017)

    Google Scholar 

  35. V.B. Anzin, M.I. Eremets, Y.V. Kosichkin, A.I. Nadezhdinskii, A.M. Shirokov, Measurement of the energy gap in tellurium under pressure. Phys. Status Solidi (a) 42, 385–390 (1977)

    Article  ADS  Google Scholar 

  36. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge UGC for providing the computational HPC facility in the Department of Physics, HPU Summer Hill shimla through FIST grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamanna Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 112 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, T., Thakur, R. & Sharma, R. Structural, electronic and dielectric properties of Tellurium 1-D nanostructures : a DFT study. Appl. Phys. A 128, 41 (2022). https://doi.org/10.1007/s00339-021-05183-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05183-4

Keywords

Navigation