Skip to main content

Advertisement

Log in

Manufacturing of electrochemical sensors via carbon nanomaterials novel applications: a systematic review

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Most significant optical, mechanical, thermal, electronic, and chemical properties of carbon nanomaterials assist to fabricate the best electrochemical sensors with enhanced performance. Carbon-based nanomaterials electrochemical sensors are utilized for detecting the different analytes or targets, and also it promotes high electron–transfer kinetics of proteins. The remarkable sensitivity of various carbon nanomaterials, namely fullerene, graphene, carbon nanotubes, and rGO, is suitable for fabrication of electrochemical sensors. The electrochemical sensors are very simple, reliable, and cost-effective used for analyzing the amount of active electro analytes effectively. In this organized review, we are mainly exploring verities of carbon nanomaterials and smart electronic material graphene for further utilization of electrochemical sensors and extensive characterization techniques broadening on industrial scopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Copyright © 2021, Elsevier)

Fig. 2

(Copyright © 2021, Appl. Sci., MDPI)

Fig. 3

(Copyright © 2020, MDPI, 2020)

Fig. 4

(Copyright © 2019, MDPI)

Fig. 5

(Copyright © 2020, Elsevier)

Fig. 6

(Copyright © 2015,MDPI]

Fig. 7

(Copyright © 2020, MDPI)

Fig. 8 

(Copyright © 2021, Taylor & Francis)

Fig. 9

(Copyright © 2020, MDPI) [64]

Fig. 10

(Copyright © 2021, MDPI)

Fig. 11

(Copyright © 2021, MDPI] [105]

Similar content being viewed by others

References

  1. Chen K, Gao W, Emaminejad S, Kiriya D, Ota H, Nyein HY (2016) Carbon nanotubes: printed carbon nanotube electronics and sensor systems. Adv Mater 28(22):4396. https://doi.org/10.1002/adma.201670151

    Article  CAS  Google Scholar 

  2. Janegitz BC, Silva TA, Wong A, Ribovski L, Vicentini FC, Taboada Sotomayor MDP et al (2017) The application of graphene for in vitro and in vivo electrochemical biosensing. Biosens Bioelectron 89(Pt 1):224–233. https://doi.org/10.1016/j.bios.2016.03.026

    Article  CAS  Google Scholar 

  3. Tilmaciu CM, Morris MC (2015) Carbon nanotube biosensors Front Chem 3(2015):1–21. https://doi.org/10.3389/fchem.2015.00059

    Article  CAS  Google Scholar 

  4. Liu Z, Zhang L, Poyraz S, Zhang X (2013) Conducting polymer-metal nanocomposites synthesis and their sensory applications. Curr Org Chem 17(20):2256–2267. https://doi.org/10.2174/13852728113179990048

    Article  CAS  Google Scholar 

  5. Bagyalakshmi S, Sivakami A, Balamurugan KS (2020) A Zno nanorods based enzymatic glucose biosensor by immobilization of glucose oxidase on a chitosan film. Obesity Medicine 18:100229. https://doi.org/10.1016/j.obmed.2020.100229

    Article  Google Scholar 

  6. Raoof JB, Golikand AN, Baghayeri M (2010) A study of the electrocatalytic oxidation of methanol on a nickel–salophen-modified glassy carbon electrode. J Solid State Electrochem 14:817–822. https://doi.org/10.1007/s10008-009-0859-5

    Article  CAS  Google Scholar 

  7. Du J, Cheng H-M (2012) The fabrication, properties and uses of graphene/polymer composites. Macromol Chem Phys 213:1060–1077. https://doi.org/10.1002/macp.201200029

    Article  CAS  Google Scholar 

  8. El-Said, W. A.; Abdelshakour, M.; Choi, J.-H.; Choi, J.- W. 2020 Application of conducting polymer nanostructures to electrochemical biosensors. Molecules 25, 307. https://doi.org/10.3390/molecules25020307

  9. Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878. https://doi.org/10.1021/cr300068p

    Article  CAS  Google Scholar 

  10. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779. https://doi.org/10.1021/cr2001178

    Article  CAS  Google Scholar 

  11. Sivakami A, Bagyalakshmi S, Balamurugan KS (2020) Nurul Izrini Ikshan, Graphene-carbon nanotubes nanocomposite modified electrochemical sensors for toxic chemicals. Mater Res Foundations 82:211–242. https://doi.org/10.21741/9781644900956-8

    Article  CAS  Google Scholar 

  12. Hong G, Diao S, Antaris AL, Dai H (2015) Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev 115:10816–10906. https://doi.org/10.1021/acs.chemrev.5b00008

    Article  CAS  Google Scholar 

  13. Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric 3(17):1–26. https://doi.org/10.1186/s40538-016-0070-8

    Article  CAS  Google Scholar 

  14. Chen L, Hernandez Y, Feng XL, Mullen K (2012) Angew., From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Chem Int Ed 5:7640–7654. https://doi.org/10.1002/anie.201201084

    Article  CAS  Google Scholar 

  15. Hrioua A, Loudiki A, Farahi A, Bakasse M, Lahrich S, Saqrane S, Mhammedi MA El (2021) Recent advances in electrochemical sensors for amoxicillin detection in biological and environmental samples. Bioelectrochemistry 137:107687. https://doi.org/10.1016/j.bioelechem.2020.107687

    Article  CAS  Google Scholar 

  16. Van Schooten KS, Pijnappels M, Lord SR, Van Die€en, J H. (2019) Quality of daily-life gait: novel outcome for trials that focus on balance mobility and falls. Sensors 19(20):4388. https://doi.org/10.3390/s19204388

    Article  Google Scholar 

  17. Abdellatifac MH, Kesavan Sandeep, Dante S, Salerno M (2017) Induced inhomogeneity in graphene work function due to graphene - TiO2/Ag/glass substrate interaction. Thin Solid films 628:43–49. https://doi.org/10.1016/j.tsf.2017.03.011

    Article  CAS  Google Scholar 

  18. Yang GL, Jiang XL, Xu H, Zhao B (2021) Applications of MOFs as luminescent sensors for environmental pollutants. Small 17(22):2005327. https://doi.org/10.1002/smll.202005327

    Article  CAS  Google Scholar 

  19. Kropff J, Bruttomesso D, Doll W, Farret A, Galasso S, Luijf YM, DeVries JH (2015) Accuracy of two continuous glucose monitoring systems: a head-to-head comparison under clinical research centre and daily life conditions. Diabetes Obes Metabol 17(4):343–349. https://doi.org/10.1111/dom.12378

    Article  CAS  Google Scholar 

  20. Bhalla N, Jolly P, Formisano N, Estrela P (2016) Introduction to biosensors. Essays Biochem 60(1):1–8. https://doi.org/10.1042/EBC20150001

    Article  Google Scholar 

  21. Khanna VK (2012) Introduction to nanosensors. In: Khanna VK (ed) Nanosensors: physical, chemical, and biological, 1st edn. CRC Press, Boca Raton, FL, USA, pp 37–40

    Google Scholar 

  22. White RM (1987) A sensor classification scheme. IEEE Trans Ultrason Ferroelectr Freq Control 34(2):124–126. https://doi.org/10.1109/T-UFFC.1987.26922

    Article  CAS  Google Scholar 

  23. Justino CIL, Freitas AC, Pereira R, Duarte AC, Santos TAPR (2015) Recent developments in recognition elements for chemical sensors and biosensors. Trends Anal Chem 68:2. https://doi.org/10.1016/j.trac.2015.03.006

    Article  CAS  Google Scholar 

  24. Abdellatif MH, Salernoc M, Polovitsyn A, Marras S, De Angelisa F (2017) Sensing the facet orientation in silver nano-plates using scanning Kelvin probe microscopy in air. App Sur Sci 403:371–377. https://doi.org/10.1016/j.apsusc.2017.01.175

    Article  CAS  Google Scholar 

  25. Kim TH (2021) Toward emerging innovations in electrochemical biosensing technology. Appl Sci 11(6):2461. https://doi.org/10.3390/app11062461

    Article  CAS  Google Scholar 

  26. Eggins, B. Chemical sensors and biosensors. Analytical Techniques in the Sciences. Wiley, West Sussex, 2002.

  27. Yang X, Cheng H (2020) Recent developments of flexible and stretchable electrochemical biosensors. Micromachines 11:243. https://doi.org/10.3390/mi11030243

    Article  Google Scholar 

  28. Appadurai T, Subramaniyam CM, Kuppusamy R, Karazhanov S, Subramanian B (2019) Electrochemical performance of nitrogen-doped TiO2 nanotubes as electrode material for supercapacitor and Li-ion battery. Molecules 24(16):2952. https://doi.org/10.3390/molecules24162952

    Article  CAS  Google Scholar 

  29. Jill Venton,B., Dana J. 2020 DiScenza, Voltammetry, electrochemistry for bioanalysis, Elsevier 27–50. https://doi.org/10.1016/B978-0-12-821203-5.00004-X

  30. De Oliveira R, Hudari F, Franco J, Zanoni MVB (2015) Carbon nanotube-based electrochemical sensor for the determination of anthraquinone hair dyes in wastewaters. Chemosensors 3:22–35. https://doi.org/10.3390/chemosensors3010022

    Article  CAS  Google Scholar 

  31. Hu J, Zhang Z (2020) Application of electrochemical sensors based on carbon nanomaterials for detection of flavonoids. Nanomaterials 2020:10. https://doi.org/10.3390/nano10102020

    Article  CAS  Google Scholar 

  32. Shan SJ, Zhao Y, Tang H, Cui FY (2017) A mini-review of carbonaceous nanomaterials for removal of contaminants from wastewater. IOP Conf Ser Earth Environ Sci 68:012003. https://doi.org/10.1088/1755-1315/68/1/012003

    Article  Google Scholar 

  33. Labib M, Sargent EH, Kelley SO (2016) Electrochemical methods for the analysis of clinically relevant biomolecules. Chem Rev 116:9001–9090. https://doi.org/10.1021/acs.chemrev.6b00220

    Article  CAS  Google Scholar 

  34. Vilas-Boas Â, Valderrama P, Fontes N, Geraldo D, Bento F (2019) Evaluation of total polyphenol content of wines by means of voltammetric techniques: cyclic voltammetry vs differential pulse voltammetry. Food Chem 276:719–725. https://doi.org/10.1016/j.foodchem.2018.10.078

    Article  CAS  Google Scholar 

  35. Terrones M (2003) Science and technology of the twenty- century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res 33:419–501. https://doi.org/10.1146/annurev.matsci.33.012802.100255

    Article  CAS  Google Scholar 

  36. Zhang M, Li J (2009) Carbon nanotube in different shapes. Materials Today 12(6):12–18. https://doi.org/10.1016/S1369-7021(09)70176-2

    Article  CAS  Google Scholar 

  37. Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84(24):5552–5555. https://doi.org/10.1103/physrevlett.84.5552

    Article  CAS  Google Scholar 

  38. Sainio S, Nordlund D, Caro MA, Gandhiraman R, Koehne J, Wester N, Koskinen J, Meyyappan M, Laurila T (2016) Correlation between sp3-to-sp2 ratio and surface oxygen functionalities in tetrahedral amorphous carbon (ta-C) thin film electrodes and implications of their electrochemical properties. J Phys Chem C 120:8298–8304. https://doi.org/10.1021/acs.jpcc.6b02342

    Article  CAS  Google Scholar 

  39. Davis C, Amaratunga G, Knowles K (1998) Growth mechanism and cross-sectional structure of tetrahedral amorphous carbon thin films. Phys Rev Lett 80:3280. https://doi.org/10.1103/PhysRevLett.80.3280

    Article  CAS  Google Scholar 

  40. Kaushik Pal, Nidhi Asthana, Alaa A Aljabali, Sheetal K. Bhardwaj, Samo Kralj, Anastasia Penkova, Sabu Thomas, Tean Zaheer & Fernando Gomes de Souz, 2021 A critical review on multifunctional smart materials ‘nanographene’ emerging avenue: nano-imaging and biosensor applications, Critical Reviews in Solid State and Materials Sciences, https://doi.org/10.1080/10408436.2021.1935717

  41. Zhu Yanwu, Murali Shanthi, Cai Weiwei, Li Xuesong, Suk Ji Won, Potts Jeffrey R, Rodney S (2010) Ruoff, Graphene and graphene oxide: synthesis properties and applications. Adv Mater. 222(35):3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  42. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145. https://doi.org/10.1021/cr900070d

    Article  CAS  Google Scholar 

  43. Mahore RP, Burghate DK, Kondawa SB (2014) Development of nanocomposites based on polypyrrole and carbon nanotubes for supercapacitors. Adv Mat Lett 5:400–405. https://doi.org/10.5185/amlett.2014.amwc.1038

    Article  CAS  Google Scholar 

  44. Zhong YL, Tian Z, Simon GP, Li D (2015) Scalable production of graphene via wet chemistry: progress and challenges. Mater Today 18(2):73–78. https://doi.org/10.1016/j.mattod.2014.08.019

    Article  CAS  Google Scholar 

  45. Kaur Gagandeep, Anupreet K, Harpreet K (2021) Review on nanomaterials/conducting polymer based nanocomposites for the development of biosensors and electrochemical sensors. Polymer-Plastics Tech Mater 60(5):504–521. https://doi.org/10.1080/25740881.2020.1844233

    Article  CAS  Google Scholar 

  46. Sundaram RS (2014) Chemically derived graphene. In: Skákalová V, Schäffel F, Bachmatiuk A, Rümmeli MH (eds) Graphene: properties, preparation, characterisation and devices. Woodhead Publishing, Sawston, Cambridge, pp 50–80

    Chapter  Google Scholar 

  47. Ramesha GK, Sampath NS (2009) Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J Phys Chem C 113(19):7985–7989. https://doi.org/10.1021/jp811377n

    Article  CAS  Google Scholar 

  48. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  49. Hatchett DW, Josowicz M (2008) Composites of intrinsically conducting polymers as sensing nanomaterials. Chem Rev 108:746–769. https://doi.org/10.1021/cr068112h

    Article  CAS  Google Scholar 

  50. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem 48(42):7752–7777. https://doi.org/10.1002/anie.200901678

    Article  CAS  Google Scholar 

  51. Novoselov KS, Jiang Z, Zhang Y et al (2007) Room-temperature quantum hall effect in graphene. Science 315(5817):1379

    Article  CAS  Google Scholar 

  52. Wang G, Morrin A, Li M, Liu N, Luo X (2018) Nanomaterial-doped conducting polymers for electrochemical sensors and biosensors. J Mater Chem B 6:4173–4190. https://doi.org/10.1039/C8TB00817E

    Article  CAS  Google Scholar 

  53. Luo X, Qiu T, Lu W, Ni Z (2013) Plasmons in graphene: recent progress and applications. Mater. Sci. Eng. R Rep. 74:351–376. https://doi.org/10.48550/arXiv.1309.3654

    Article  Google Scholar 

  54. Smith AT, LaChance AM, Zeng S, Liu B, Sun L (2019) Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater Sci 1:31–47. https://doi.org/10.1016/j.nanoms.2019.02.004

    Article  Google Scholar 

  55. Bo Z et al (2014) Green preparation of reduced graphene oxide for sensing and energy storage applications. Sci Rep 4(4684):18. https://doi.org/10.1038/srep04684

    Article  CAS  Google Scholar 

  56. Boehm HP et al (1960) Graphite oxide and its membrane properties. J Chim Phys Rev Gen Colloides 58(12):110–117

    Google Scholar 

  57. Reina G, J.M. Gonza´lez-Domı´nguez, A. Criado, E. Va´zquez, A. Bianco, M. (2017) Prato Promises facts and challenges for graphene in biomedical applications. Chem. Soc. Rev. 46(15):4400–4416. https://doi.org/10.1039/C7CS00363C

    Article  CAS  Google Scholar 

  58. Whitener KE, Sheehan PE (2014) Graphene synthesis. Diam Relat Mater 46:25–34. https://doi.org/10.1016/j.diamond.2014.04.006

    Article  CAS  Google Scholar 

  59. Xu J, Wang Y, Hu S (2016) Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review Microchim Acta 184(1):1–44. https://doi.org/10.1007/s00604-016-2007-0

    Article  CAS  Google Scholar 

  60. Lin J, Chen X, Huang P (2016) Graphene-based nanomaterials for bioimaging. Adv Drug Deliver Rev 105:242–254. https://doi.org/10.1016/j.addr.2016.05.013

    Article  CAS  Google Scholar 

  61. Kasani S, Curtin K, Wu N (2019) A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications. Nanophotonics 8:2065–2089. https://doi.org/10.1515/nanoph-2019-0158

    Article  CAS  Google Scholar 

  62. Amieva, J. C., Barroso, J. L., Hernandez, A. L. M., and Santos, C. V. (2016). “Graphene-based materials functionalization with natural polymeric biomolecules,” in Recent Advances in Graphene Research, ed N. Pramoda Kumar (Rijeka: InTech), 257–298.

  63. Basu S, Bhattacharyya P (2012) Recent developments on graphene and graphene oxide based solid state gas sensors. Sens Actuators B Chem 173:1–21. https://doi.org/10.1016/j.snb.2012.07.092

    Article  CAS  Google Scholar 

  64. Abu-Nada A, McKay G, Abdala A (2020) Recent advances in applications of hybrid graphene materials for metals removal from wastewater. Nanomaterials 10:595. https://doi.org/10.3390/nano10030595

    Article  CAS  Google Scholar 

  65. Wu F, Thomas PA, Kravets VG, Arola HO, Soikkeli M, Iljin K et al (2019) Layered material platform for surface plasmon resonance biosensing. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-56105-7

    Article  CAS  Google Scholar 

  66. Szunerits S, Maalouli N, Wijaya E, Vilcot JP, Boukherroub R (2013) Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces. Anal Bioanal Chem 405:1435–1443. https://doi.org/10.1007/s00216-012-6624-0

    Article  CAS  Google Scholar 

  67. Jana A, Scheer E, Polarz S (2017) Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields. Beilstein J Nanotechnol 8:688–714. https://doi.org/10.3762/bjnano.8.74

    Article  CAS  Google Scholar 

  68. Huang P, Wang S, Wang X, Shen G, Lin J et al (2015) Surface functionalization of chemically reduced graphene oxide for targeted photodynamic therapy. J Biomed Nanotechnol 11(1):117–125. https://doi.org/10.1166/jbn.2015.2055

    Article  CAS  Google Scholar 

  69. Nanda SS, Papaefthymiou GC, Yi DK (2015) Functionalization of graphene oxide and its biomedical applications. Crit. Rev Solid State Mater. Sci. 40(5):291–315. https://doi.org/10.1080/10408436.2014.1002604

    Article  CAS  Google Scholar 

  70. Liu F, Lee CW, Im JS (2013) Graphene-based carbon materials for electrochemical energy storage. J Nanomater 2013:642915. https://doi.org/10.1155/2013/642915

    Article  CAS  Google Scholar 

  71. Gonçalves G, Marques P, Vila M (2016) Carbon nanostructures. Springer Cham, pp IX, 356. https://doi.org/10.1007/978-3-319-45639-3

  72. Mendes RG, Bachmatiuk A, B. Bu¨chner, G. Cuniberti and M. H. Rummeli. (2013) Carbon nanostructures as multi-functional drug delivery platforms. J. Mater. Chem. B 1:401–428. https://doi.org/10.1039/C2TB00085G

    Article  CAS  Google Scholar 

  73. Beck MT, G. (1997) Ma´ndi, Solubility of C 60Fullerene. Sci Technol. 5:291–310. https://doi.org/10.1080/15363839708011993

    Article  CAS  Google Scholar 

  74. Fan X, Soin N, Li H, Li H, Xia X, Geng J (2020) Fullerene (C60) Nanowires: the preparation, characterization, and potential applications. Energy Environ Mater 3:469–491. https://doi.org/10.1002/eem2.12071

    Article  CAS  Google Scholar 

  75. Goodarzi S, Da Ros T, Conde J, Sefat F, Mozafari M (2017) Fullerene: biomedical engineers get to revisit an old friend. Mater Today 20:460–480. https://doi.org/10.1016/j.mattod.2017.03.017

    Article  CAS  Google Scholar 

  76. Ehrenfreund P, Foing BH (2010) Fullerenes and cosmic carbon. Science 329:1159–1160. https://doi.org/10.1126/science.1194855

    Article  CAS  Google Scholar 

  77. Withers JC, Loutfy RO, Lowe TP (1997) Fullerene commercial vision. Fullerene Sci Technol 5:1–31. https://doi.org/10.1080/15363839708011971

    Article  Google Scholar 

  78. Hwang HS, Jeong JW, Kim YA, Chang M (2020) Carbon nanomaterials as versatile platforms for biosensing applications. Micromachines 11:814. https://doi.org/10.3390/mi11090814

    Article  Google Scholar 

  79. Abdellatif MH, Salerno M, Abdelrasoul GN, Liakos I, Scarpellini A, Marras S, Diaspro A (2016) Effect of Anderson localization on light emission from gold nanoparticle aggregates. Beilstein J Nanotechnol 7:2013–2022. https://doi.org/10.3762/bjnano.7.192

    Article  CAS  Google Scholar 

  80. Popov AA, Yang S, Dunsch L (2013) Endohedral FullerenesChem Rev 113:5989–6113. https://doi.org/10.1021/cr300297r

    Article  CAS  Google Scholar 

  81. Mercado BQ, Beavers CM, Olmstead MM, Chaur MN, Walker K, Holloway BC, Echegoyen L, Balch AL (2008) Is the isolated pentagon rule merely a suggestion for endohedral fullerenes? The structure of a second egg-shaped endohedral fullerene—Gd3N@Cs(39663)-C82. J Am Chem Soc 130:7854–7855. https://doi.org/10.1021/ja8032263

    Article  CAS  Google Scholar 

  82. S. Yang and C.-R. 2014 Wang, Endohedral fullerenes, World Scientific 448. https://doi.org/10.1142/8785

  83. Okada H, Komuro T, Sakai T, Matsuo Y, Ono Y, Omote K, Yokoo K, Kawachi K, Kasama Y, Ono S, Hatakeyama R, Kaneko T, Tobita H (2012) Preparation of endohedral fullerene containing lithium (Li@C60) and isolation as pure hexafluorophosphate salt ([Li+@C60][PF6−])†. RSC Adv 2:10624. https://doi.org/10.1039/C2RA21244G

    Article  CAS  Google Scholar 

  84. Bai H, Gao H, Feng W, Zhao Y, Wu Y (2019) Interaction in Li@Fullerenes and Li+@Fullerenes: first principle insights to Li-based endohedral fullerenes. Nanomaterials 9:630. https://doi.org/10.3390/nano9040630

    Article  CAS  Google Scholar 

  85. Pupysheva OV, Farajian AA, Yakobson BI (2008) Fullerene nanocage capacity for hydrogen storage Nano Lett 8:767–774. https://doi.org/10.1021/nl071436g

    Article  CAS  Google Scholar 

  86. Zhu Z, García-Gancedo L, Flewitt AJ, Moussy F, Li YL, Milne WI (2012) Design of carbon nanotube fiber microelectrode for glucose biosensing. J Chem Technol Biotechnol 87:256–262. https://doi.org/10.1002/jctb.2708

    Article  CAS  Google Scholar 

  87. Zeng YL, Huang YF, Jiang JH, Zhang XB, Tang CR, Shen GL, Yu RQ (2007) Functionalization of multi-walled carbon nanotubes with poly(amidoamine) dendrimer for mediator-free glucose biosensor. Electrochem Commun 9(1):185–190. https://doi.org/10.1016/j.elecom.2006.08.052

    Article  CAS  Google Scholar 

  88. Shukla, S.K.; Govender, P.P.; Tiwari 2016 A. Polymeric micellar structures for biosensor technology. In Advances in Biomembranes and Lipid Self-Assembly, 1st ed.; Iglic, A., Kulkarni, C.V., Rappolt, M., Eds.; Academic Press: Cambridge, MA, USA,143–161. https://doi.org/10.1016/bs.abl.2016.04.005

  89. Wang J, Dai J, Yarlagadda T (2005) Carbon nanotube-conducting-polymer composite nanowires. Langmuir 21(1):9–12. https://doi.org/10.1021/la0475977

    Article  CAS  Google Scholar 

  90. Newman JD, Turner AP (2005) Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron 20:2435–2453. https://doi.org/10.1016/j.bios.2004.11.012

    Article  CAS  Google Scholar 

  91. Hsu YW, Hsu TK, Sun CL, Nien YT, Pu NW, Ger MD (2012) Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications. Electrochimca Acta 82:152–157. https://doi.org/10.1016/j.electacta.2012.03.094

    Article  CAS  Google Scholar 

  92. Koren K, Jensen P, Kühl M (2016) Development of a rechargeable optical hydrogen peroxide sensor–sensor design and biological application. Analyst 141:4332–4339. https://doi.org/10.1039/C6AN00864J

    Article  CAS  Google Scholar 

  93. Zhu L, Yang R, Zhai J, Tian C (2007) Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode. Biosens Bioelectron 23:528–535. https://doi.org/10.1016/j.bios.2007.07.002

    Article  CAS  Google Scholar 

  94. Bai L, Wen D, Yin J, Deng L, Zhu C, Dong S (2012) Carbon nanotubes-ionic liquid nanocomposites sensing platform for NADH oxidation and oxygen, glucose detection in blood. Talanta 91:110–115. https://doi.org/10.1016/j.talanta.2012.01.027

    Article  CAS  Google Scholar 

  95. Huang T-Y, Huang J-H, Wei H-Y, Ho K-C, Chu C-W (2013) rGO/SWCNT composites as novel electrode materials for electrochemical biosensing. Biosens Bioelectron 43:173–179. https://doi.org/10.1016/j.bios.2012.10.047

    Article  CAS  Google Scholar 

  96. Liu H, Na W, Liu Z, Chen X, Su X (2017) A novel turn-on fluorescent strategy for sensing ascorbic acid using graphene quantum dots as fluorescent probe. Biosens Bioelectron 92:229–233. https://doi.org/10.1016/j.bios.2017.02.005

    Article  CAS  Google Scholar 

  97. O. Arrigoni and M. C. De Tullio 2002 “Ascorbic acid: much more than just an antioxidant,” Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1569, no. 1–3, pp. 1–9,. https://doi.org/10.1016/s0304-4165(01)00235-5

  98. L. Liao, H. Peng, Z. Liu, 2014 Chemistry makes graphene beyond graphene. J Am Chem. Soc. 136 (35) https://doi.org/10.1021/ja5048297

  99. Li W, Zhou Q, Hua T (2010) Removal of organic matter from landfill leachate by advanced oxidation processes: a review. Int J Chem Eng 2010:1–10. https://doi.org/10.1155/2010/270532

    Article  CAS  Google Scholar 

  100. Yang Lu, Liu D (2014) Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sens Actuators, B Chem 193(31):166–172. https://doi.org/10.1016/j.snb.2013.11.104

    Article  CAS  Google Scholar 

  101. Mohammed N (2018) Modawe Alshik Edris a, Jaafar Abdullah a, Electrochemical reduced graphene oxide-poly (eriochrome black T)/gold nanoparticles modified glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. Arab J Chem 11(8):1301–1312. https://doi.org/10.1016/j.arabjc.2018.09.002

    Article  CAS  Google Scholar 

  102. Sun Y, Fei J, Hou J, Zhang Q (2009) Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode. Microchim Acta 165:373–379. https://doi.org/10.1007/s00604-009-0147-1

    Article  CAS  Google Scholar 

  103. Rodríguez MC, Rubianes MD, Rivas GA (2008) Highly selective determination of dopamine in the presence of ascorbic acid and serotonin at glassy carbon electrodes modified with carbon nanotubes dispersed in polyethylenimine. J Nanosci Nanotechnol 8:6003–6009. https://doi.org/10.1166/jnn.2008.466

    Article  CAS  Google Scholar 

  104. Tajik S (2020) a Hadi Beitollahi. Recent developments in conducting polymers: applications for electrochemistry, : RSC Adv 10:37834. https://doi.org/10.1039/D0RA06160C

    Article  CAS  Google Scholar 

  105. Dăscălescu D, Apetrei C (2021) Nanomaterials based electrochemical sensors for serotonin detection: a review. Chemosensors 9:14. https://doi.org/10.3390/chemosensors9010014

    Article  CAS  Google Scholar 

  106. Lin T-W, Liu C-J, Dai C-S (2014) Ni3S2/carbon nanotube nanocomposite as electrode material for hydrogen evolution reaction in alkaline electrolyte and enzyme-free glucose detection. Appl Catal B 154–155:213–220. https://doi.org/10.1016/j.apcatb.2014.02.017

    Article  CAS  Google Scholar 

  107. Shun Lu (2020) Synthesis of Au@ZIF-8 nanocomposites for enhanced electrochemical detection of dopamine. Electrochem Commun 114:106715. https://doi.org/10.1016/j.elecom.2020.106715

    Article  CAS  Google Scholar 

  108. Azimov F, Kim J, Choi SM, Jung HM (2021) Synergistic effects of Fe2O3 nanotube/polyaniline composites for an electrochemical supercapacitor with enhanced capacitance. Nanomaterials 11:1557. https://doi.org/10.3390/nano11061557

    Article  CAS  Google Scholar 

  109. Rajabi Hossein, Noroozifar Meissam, Sabbaghi Najmeh (2017) Electrochemical determination of uric acid using nano resin modified carbon paste electrode as a new sensor. J Mater Appl Sci 1(1):1002

    Google Scholar 

  110. Terán-Alcocer Á (2021) Electrochemical sensors based on conducting polymers for the aqueous detection of biologically relevant molecules. Nanomaterials 11:252. https://doi.org/10.3390/nano11010252

    Article  CAS  Google Scholar 

  111. Saheed E (2021) Elugoke, Omolola E Fayemi, Conductive nanodiamond-based detection of neurotransmitters: one decade, few sensors s. ACS Omega 6:18548–18558. https://doi.org/10.1021/acsomega.1c01534

    Article  CAS  Google Scholar 

  112. Hye Suk Hwang (2007) Carbon nanomaterials as versatile platforms for biosensing applications, Micromachines, hem. Rev 107:2411–2502. https://doi.org/10.3390/mi11090814

    Article  Google Scholar 

  113. Yang N, Uetsuka H, Osawa E, Nebel CE (2008) Vertically aligned diamond nanowires for DNA sensing. Angew Chem Int Ed Engl 47:5183–5185. https://doi.org/10.1002/anie.200801706

    Article  CAS  Google Scholar 

  114. Muniandy S (2019) Carbon nanomaterial-based electrochemical biosensors for foodborne bacterial detection. Crit Rev Anal Chem 49(6):510–533. https://doi.org/10.1080/10408347.2018.1561243

    Article  CAS  Google Scholar 

  115. Tiwari JN, Vij V, Kemp KC, Kim KS (2016) Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. ACS Nano 10(1):46–80. https://doi.org/10.1021/acsnano.5b05690

    Article  CAS  Google Scholar 

  116. Muniandy S, Teh SJ (2019) Carbon nanomaterial-based electrochemical biosensors for foodborne bacterial detection. Crit Rev Anal Chem 49(6):510–533. https://doi.org/10.1080/10408347.2018.1561243

    Article  CAS  Google Scholar 

  117. Bobrinetskiy I (2021) Advances in nanomaterials-based electrochemical biosensors for foodborne pathogen detection. Nanomaterials 11(10):2700. https://doi.org/10.3390/nano11102700

    Article  CAS  Google Scholar 

  118. Zhang Xiao, A novel immunosensor for Enterobacter sakazakii based on multiwalled carbon nanotube/ionic liquid/thionine modified electrode, Electrochimica Acta; v. 61; p. 73–77. https://doi.org/10.1016/j.electacta.2011.11.092

  119. Kumar P (2019) Antibacterial properties of graphene-based nanomaterials. Nanomaterials 9:737. https://doi.org/10.3390/nano9050737

    Article  CAS  Google Scholar 

  120. Punbusayakul N (2013) Label-free as-grown double wall carbon nanotubes bundles for Salmonella typhimuriumimmunoassay. Chem Cent J 7:102. https://doi.org/10.1186/1752-153X-7-102

    Article  CAS  Google Scholar 

  121. Chunglok W, Wuragii DK, Oaew S, Somasundrum M, Surareungchai W (2011) Immunoassay based on carbon nanotubes-enhanced ELISA for Salmonella enterica serovar Typhimurium. Biosens Bioelectron 26:3584–3589. https://doi.org/10.1016/j.bios.2011.02.005

    Article  CAS  Google Scholar 

  122. Padigi SK, Reddy RKK, Prasad S (2007) Carbon nanotube based aliphatic hydrocarbon sensor. Biosens Bioelectron 22:829–837. https://doi.org/10.1016/j.bios.2006.02.023

    Article  CAS  Google Scholar 

  123. Sivapalasingam S, Friedman CR, Cohenand L, Tauxe RV (2004) Fresh produce: a growing cause of outbreaks of foodborne illness in the United States 1973 through 1997. J Food Protect 67:2342–2353. https://doi.org/10.4315/0362-028x-67.10.2342

    Article  Google Scholar 

  124. Wu Y, Song H, Lu K, Ye Y, Lv M, Zhao Y (2017) Direct electrodeposition to fabricate vertically-oriented graphene nanosheets modified electrode and its application for determination of levodopa in the presence of uric acid and ascorbic acid. NANO 12:1750087. https://doi.org/10.1142/S1793292017500874

    Article  CAS  Google Scholar 

  125. Atta NF, Galal A, Ahmed RA (2011) Simultaneous determination of catecholamines and serotonin on poly(3,4-ethylene dioxythiophene) modified Pt electrode in presence of sodium dodecyl sulfate. J Electrochem Soc 158:F52. https://doi.org/10.1149/1.3551579

    Article  CAS  Google Scholar 

  126. Madhavan AS, Kunjappan LM, Rajith L (2021) Simultaneous electrochemical determination of L-Dopa and melatonin at reduced graphene oxide-Cu.05Co0.5Fe2O4 Modified Platinum Electrode. J Electrochem. Soc 168:057533. https://doi.org/10.1149/1945-7111/ac0309/meta

    Article  CAS  Google Scholar 

  127. Li L, Wang Y, Pan L, Shi Y, Cheng W, Shi Y, Yu G (2015) A Nanostructured conductive hydrogels-based biosensor platform for human metabolite detection. Nano Lett 15:1146–1151. https://doi.org/10.1021/nl504217p

    Article  CAS  Google Scholar 

  128. Dinu A, Apetrei C (2022) A review of sensors and biosensors modified with conducting polymers and molecularly imprinted polymers used in electrochemical detection of amino acids phenylalanine tyrosine and tryptophan. Int J Mol Sci 23(3):1218. https://doi.org/10.3390/ijms23031218

    Article  CAS  Google Scholar 

  129. Sooraj MP, Nair AS, Pillai SC, Hinder SJ, Mathew B (2020) CuNPs decorated molecular imprinted polymer on MWCNT for the electrochemical detection of l-DOPA Arab. J Chem 13:2483. https://doi.org/10.1016/j.arabjc.2018.06.002

    Article  CAS  Google Scholar 

  130. Babaei A, Taheri AR (2013) Nafion/Ni(OH)2 Nanoparticles-carbon nanotube composite modified glassy carbon electrode as a sensor for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. Sens Actuators B Chem 176:543–551. https://doi.org/10.1016/j.snb.2012.09.021

    Article  CAS  Google Scholar 

  131. Sadanandhan NK, Cheriyathuchenaaramvalli M, Devaki SJ, Menon AR (2017) PEDOT-reduced graphene oxide-silver hybrid nanocomposite modified transducer for the detection of serotonin. J Electroanal Chem 794:244–253. https://doi.org/10.1016/j.jelechem.2017.04.027

    Article  CAS  Google Scholar 

  132. Atta NF, Galal A, El-Gohary AR (2020) Crown ether modified poly(hydroquinone)/carbon nanotubes based electrochemical sensor for simultaneous determination of levodopa, uric acid, tyrosine and ascorbic acid in biological fluids. J Electroanal Chem 863:114032. https://doi.org/10.1016/j.jelechem.2020.114032

    Article  CAS  Google Scholar 

  133. Li L, Wang Y, Pan L, Shi Y, Cheng W, Shi Y, Yu G (2015) A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection. Nano Lett 15:1146–1151. https://doi.org/10.1021/nl504217p

    Article  CAS  Google Scholar 

  134. Karimi-Maleh H, Sheikhshoaie I, Samadzadeh A (2018) RSC Adv 8:26707

    Article  CAS  Google Scholar 

  135. Marimuthu T, Mohamad S, Alias Y (2015) Needle-like polypyrrole–NiO composite for non-enzymatic detection of glucose. Synth Met 207:35–41. https://doi.org/10.1016/j.synthmet.2015.06.007

    Article  CAS  Google Scholar 

  136. Alizadeh T, Mirzagholipur S (2014) A Nafion-free non-enzymatic amperometric glucose sensor based on copper oxide nanoparticles− graphene nanocomposite. Sens Actuators B 198:438–447. https://doi.org/10.1016/j.snb.2014.03.049

    Article  CAS  Google Scholar 

  137. Lin KC, Lin YC, Chen SM (2013) A highly sensitive non enzymatic glucose sensor based on multi-walled carbon nanotubes decorated with nickel and copper nanoparticles. Electrochim Acta 96:164–172. https://doi.org/10.1016/j.electacta.2013.02.098

    Article  CAS  Google Scholar 

  138. Vilian ATE, Chen SM, Lou BS (2014) A simple strategy for the immobilization of catalase on multi-walled carbon nanotube/poly (L-lysine) biocomposite for the detection of H2O2 and iodate. Biosensors Bioelectron 61:639–647. https://doi.org/10.1016/j.bios.2014.05.023

    Article  CAS  Google Scholar 

  139. Li SJ, Du JM, Zhang JP, Zhang MJ, Chen J (2014) A glassy carbon electrode modified with a film composed of cobalt oxide nanoparticles and graphene for electrochemical sensing of H2O2. Microchim Acta 181:631–638. https://doi.org/10.1007/s00604-014-1164-2

    Article  CAS  Google Scholar 

  140. Huang K-J, Zhang J-Z, Liu Y-J, Wang L-L (2014) Novel electrochemical sensing platform based on molybdenum disulfide nanosheets-polyaniline composites and Au nanoparticles. Sens Actuators B Chem 194:303–310. https://doi.org/10.1016/j.snb.2013.12.106

    Article  CAS  Google Scholar 

  141. de Souza Ribeiro FA, Tarley CRT, Borges KB, Pereira AC (2013) Development of a square wave voltammetric method for dopamine determination using a biosensor based on multiwall carbon nanotubes paste and crude extract of Cucurbita pepo. L Sens Actuators B 185:743–754. https://doi.org/10.1016/j.snb.2013.05.072

    Article  CAS  Google Scholar 

  142. Kannan A, Radhakrishnan S (2020) Fabrication of an electrochemical sensor based on gold nanoparticles functionalized polypyrrole nanotubes for the highly sensitive detection of l-dopa. Materials Today Commun 25:101330. https://doi.org/10.1016/j.mtcomm.2020.101330

    Article  CAS  Google Scholar 

  143. Donga J, Zhaob H, Xua M, Maa Q, Aia S (2013) A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MWCNT-Chi nanocomposite modified glassy carbon electrode for detection of Salmonella typhimurium in milk. Food Chem 141(3):1980–1986. https://doi.org/10.1016/j.foodchem.2013.04.098

    Article  CAS  Google Scholar 

  144. Jia F, Duan N, Wu S et al (2016) Impedimetric Salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes. Microchim Acta 183:337–344. https://doi.org/10.1007/s00604-015-1649-7

    Article  CAS  Google Scholar 

  145. Xie P, Liu Z, Huang S, Chen J, Yan Yu, Na Li M, Zhang M, Jin L. Shui (2022) A sensitive electrochemical sensor based on wrinkled mesoporous carbon nanomaterials for rapid and reliable assay of 17β-estradiol. Electrochimia Act 408:139960. https://doi.org/10.1016/j.electacta.2022.139960

    Article  CAS  Google Scholar 

  146. Wu G, Zheng H, Xing Y, Wang C, Yuan X, Zhu X (2022) A sensitive electrochemical sensor for environmental toxicity monitoring based on tungsten disulfide nanosheets/hydroxylated carbon nanotubes nanocomposite. Chemosphere 286:131602. https://doi.org/10.1016/j.chemosphere.2021.131602

    Article  CAS  Google Scholar 

  147. Wu B, Yeasmin S, Liu Y, Cheng L-J (2022) Sensitive and selective electrochemical sensor for serotonin detection based on ferrocene-gold nanoparticles decorated multiwall carbon nanotubes. Sensor and Actuators B: Chemical 354:131216. https://doi.org/10.1016/j.snb.2021.131216

    Article  CAS  Google Scholar 

  148. Liu Z, Liao D, Yu J, Jiang X (2022) An electrochemical sensor based on oxygen-vacancy cobalt–aluminum layered double hydroxides and hydroxylated multiwalled carbon nanotubes for catechol and hydroquinone detection. Microchem J 175:107216. https://doi.org/10.1016/j.microc.2022.107216

    Article  CAS  Google Scholar 

  149. Peng R, Chen W, Zhou Q (2022) Electrochemical sensor for chloramphenicol based on copper nanodendrites and carbon nanotubes. Ionics 28:451–462. https://doi.org/10.1007/s11581-021-04323-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Sivakami or Kaushik Pal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection: “Nanoarchitectonics for Functional Particles and Materials”.

Guest Editor: Katsuhiko Ariga.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagyalakshmi, S., Sivakami, A., Pal, K. et al. Manufacturing of electrochemical sensors via carbon nanomaterials novel applications: a systematic review. J Nanopart Res 24, 201 (2022). https://doi.org/10.1007/s11051-022-05576-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05576-3

Keywords

Navigation