Skip to main content
Log in

Nanoparticle application in diabetes drug delivery

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The management of diabetes, in contrast to the treatment of the disease, is basically aimed at controlling the blood glucose level. Besides the primary changes required in the lifestyle and diet of the patient, drug therapy can play a critical role in the diabetes management. Diabetic drugs are formulated in various forms to permit oral, transdermal, internasal, or delivery by subcutaneous injection. Notably, in formulations intended for controlled release, targeted delivery, and those requiring protection of the therapeutic agent, nanoparticles (NPs) play a crucial role. Nanoparticle-based drug formulations can also alleviate the common side effects associated with the regular administration of pure drugs. In this review, we will consider the impact of NPs on the delivery of both oral and injectable drugs to manage diabetes as well as the potential application of nanotechnology to the development of devices such as microneedles aimed at improving the delivery of diabetes drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hu M, Cherkaoui I, Misra S, Rutter GA (2020) Functional genomics in pancreatic β cells: recent advances in gene deletion and genome editing technologies for diabetes research. Front Endocrinol 11

  2. Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R (2015) Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discovery 14:45

    Article  CAS  Google Scholar 

  3. Hussain T, Tan B, Murtaza G, Liu G, Rahu N, Kalhoro MS, Kalhoro DH, Adebowale TO, Mazhar MU, urRehman Z (2020) Flavonoids and type 2 diabetes: evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol Res 152:104629

    Article  CAS  Google Scholar 

  4. Sarmah S, Pahari S, Belwal VK, Jana M, Roy AS (2020) Elucidation of molecular interaction of bioactive flavonoid luteolin with human serum albumin and its glycated analogue using multi-spectroscopic and computational studies. J Mol Liq 318:114147

    Article  CAS  Google Scholar 

  5. Qiu H, Jin L, Chen J, Shi M, Shi F, Wang M, Li D, Xu X, Su X, Yin X (2020) Comprehensive glycomic analysis reveals that human serum albumin glycation specifically affects the pharmacokinetics and efficacy of different anticoagulant drugs in diabetes. Diabetes 69:760–770

    Article  CAS  Google Scholar 

  6. Hörber S, Achenbach P, Schleicher E, Peter A (2020) Harmonization of immunoassays for biomarkers in diabetes mellitus. Biotechnol Adv 39:107359

    Article  Google Scholar 

  7. Zhang Y, Li J, Wu M, Guo Z, Tan D, Zhou X, Li Y, Liu S, Xue L, Lei Y, (2020) Glucose-responsive gold nanocluster-loaded microneedle patch for type 1 diabetes therapy. ACS Appl Bio Mater

  8. Dovc K, Battelino T (2020) Closed-loop insulin delivery systems in children and adolescents with type 1 diabetes. Expert Opin Drug Deliv 17:157–166

    Article  CAS  Google Scholar 

  9. Zamboni F, Collins MN (2017) Cell based therapeutics in type 1 diabetes mellitus. Int J Pharm 521:346–356

    Article  CAS  Google Scholar 

  10. Yamada Y, Tabata M, Yasuzaki Y, Nomura M, Shibata A, Ibayashi Y, Taniguchi Y, Sasaki S, Harashima H (2014) A nanocarrier system for the delivery of nucleic acids targeted to a pancreatic beta cell line. Biomaterials 35:6430–6438

    Article  CAS  Google Scholar 

  11. Wu M, Liao L, Jiang L, Zhang C, Gao H, Qiao L, Liu S, Shi D (2019) Liver-targeted nano-MitoPBN normalizes glucose metabolism by improving mitochondrial redox balance. Biomaterials 222:119457

    Article  CAS  Google Scholar 

  12. Kazemi F, Divsalar A, Saboury AA, Seyedarabi A (2019) Propolis nanoparticles prevent structural changes in human hemoglobin during glycation and fructation. Colloids Surf, B 177:188–195

    Article  CAS  Google Scholar 

  13. Lakkireddy HR, Urmann M, Besenius M, Werner U, Haack T, Brun P, Alié J, Illel B, Hortala L, Vogel R (2016) Oral delivery of diabetes peptides—comparing standard formulations incorporating functional excipients and nanotechnologies in the translational context. Adv Drug Deliv Rev 106:196–222

    Article  CAS  Google Scholar 

  14. Sharma G, Sharma AR, Nam J-S, Doss GPC, Lee S-S, Chakraborty C (2015) Nanoparticle based insulin delivery system: the next generation efficient therapy for type 1 diabetes. J Nanobiotechnol 13:74

    Article  Google Scholar 

  15. Sharma R, Gupta U, Garg NK, Tyagi RK, Jain N (2015) Surface engineered and ligand anchored nanobioconjugate: an effective therapeutic approach for oral insulin delivery in experimental diabetic rats. Colloids Surf, B 127:172–181

    Article  CAS  Google Scholar 

  16. Jayakrishnapillai P, Nair SV, Kamalasanan K (2017) Current trend in drug delivery considerations for subcutaneous insulin depots to treat diabetes. Colloids Surf, B 153:123–131

    Article  CAS  Google Scholar 

  17. Dungan K, DeSantis A, (2016) Glucagon-like peptide-1 receptor agonists for the treatment of type 2 diabetes mellitus, Up to date Nov, 21

  18. Chen Y, Li Y, Shen W, Li K, Yu L, Chen Q, Ding J (2016) Controlled release of liraglutide using thermogelling polymers in treatment of diabetes. Sci Rep 6:31593

    Article  CAS  Google Scholar 

  19. Tahrani AA, Barnett AH, Bailey CJ (2016) Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat Rev Endocrinol 12:566

    Article  CAS  Google Scholar 

  20. Li L, Jiang G, Yu W, Liu D, Chen H, Liu Y, Tong Z, Kong X, Yao J (2017) Preparation of chitosan-based multifunctional nanocarriers overcoming multiple barriers for oral delivery of insulin. Mater Sci Eng, C 70:278–286

    Article  CAS  Google Scholar 

  21. Shamsi A, Ahmed A, Khan MS, Husain FM, Bano B, (2020) Rosmarinic acid restrains protein glycation and aggregation in human serum albumin: multi spectroscopic and microscopic insight-possible therapeutics targeting diseases. Int J Biol Macromol

  22. AlBab ND, Hameed MK, Maresova A, Ahmady IM, Arooj M, Han C, Workie B, Chehimi M, Mohamed AA (2020) Inhibition of amyloid fibrillation, enzymatic degradation and cytotoxicity of insulin at carboxyl tailored gold-aryl nanoparticles surface. Colloids Surf, A 586:124279

    Article  CAS  Google Scholar 

  23. Shilo M, Berenstein P, Dreifuss T, Nash Y, Goldsmith G, Kazimirsky G, Motiei M, Frenkel D, Brodie C, Popovtzer R (2015) Insulin-coated gold nanoparticles as a new concept for personalized and adjustable glucose regulation. Nanoscale 7:20489–20496

    Article  CAS  Google Scholar 

  24. Wu S, Bin W, Tu B, Li X, Wang W, Liao S, Sun C (2019) A delivery system for oral administration of proteins/peptides through bile acid transport channels. J Pharm Sci 108:2143–2152

    Article  CAS  Google Scholar 

  25. Wu L, Bai Y, Wang L, Liu X, Zhou R, Li L, Wu R, Zhang Z, Zhu X, Huang Y (2020) Promoting apical-to-basolateral unidirectional transport of nanoformulations by manipulating the nutrient-absorption pathway. J Control Release

  26. Chen Y, Shan X, Luo C, He Z (2020) Emerging nanoparticulate drug delivery systems of metformin. J Pharm Investig 1–12

  27. Baig MMFA, Abbas M, Naveed M, Kassim SA, Khan GJ, Sohail M, Ullah S, Hasnat M, Shah K, Ansari MT (2019) Design, synthesis and evaluation of DNA nano-cubes as a core material protected by the alginate coating for oral administration of anti-diabetic drug. J Food Drug Anal 27:805–814

    Article  CAS  Google Scholar 

  28. Fang X, Yang T, Wang L, Yu J, Wei X, Zhou Y, Wang C, Liang W (2016) Nano-cage-mediated refolding of insulin by PEG-PE micelle. Biomaterials 77:139–148

    Article  CAS  Google Scholar 

  29. Zhang Y, Li J, Wang Z, Xu M-Z, Zeng Z, Huang J-P, Guan Y-Q (2020) Natural plant-derived polygalacturonic acid-oleanolic acid assemblies as oral-delivered nanomedicine for insulin resistance treatment. Chem Eng J 124630.

  30. Hu X, Yu J, Qian C, Lu Y, Kahkoska AR, Xie Z, Jing X, Buse JB, Gu Z (2017) H2O2-responsive vesicles integrated with transcutaneous patches for glucose-mediated insulin delivery. ACS Nano 11:613–620

    Article  CAS  Google Scholar 

  31. Yu J, Zhang Y, Yan J, Kahkoska AR, Gu Z (2018) Advances in bioresponsive closed-loop drug delivery systems. Int J Pharm 544:350–357

    Article  CAS  Google Scholar 

  32. Mohammadpour F, Hadizadeh F, Tafaghodi M, Sadri K, Mohammadpour AH, Kalani MR, Gholami L, Mahmoudi A, Chamani J (2019) Preparation, in vitro and in vivo evaluation of PLGA/chitosan based nano-complex as a novel insulin delivery formulation. Int J Pharm 572:118710

    Article  CAS  Google Scholar 

  33. Sharma D, Arora S, Singh J (2019) Smart thermosensitive copolymer incorporating chitosan–zinc–insulin electrostatic complexes for controlled delivery of insulin: effect of chitosan chain length. Int J Polym Mater PolymBiomater 1–15

  34. Seo B-B, Park M-R, Song S-C (2019) Sustained release of exendin 4 using injectable and ionic-nano-complex forming polymer hydrogel system for long-term treatment of type 2 diabetes mellitus. ACS Appl Mater Interfaces 11:15201–15211

    Article  CAS  Google Scholar 

  35. Gilroy CA, Luginbuhl KM, Chilkoti A (2016) Controlled release of biologics for the treatment of type 2 diabetes. J Control Release 240:151–164

    Article  CAS  Google Scholar 

  36. Schwenk RW, Baumeier C, Finan B, Kluth O, Brauer C, Joost H-G, DiMarchi RD, Tschöp MH, Schürmann A (2015) GLP-1–oestrogen attenuates hyperphagia and protects from beta cell failure in diabetes-prone New Zealand obese (NZO) mice. Diabetologia 58:604–614

    Article  CAS  Google Scholar 

  37. Saatchi K, Tod SE, Leung D, Nicholson KE, Andreu I, Buchwalder C, Schmitt V, Häfeli UO, Gray SL (2017) Characterization of alendronic-and undecylenic acid coated magnetic nanoparticles for the targeted delivery of rosiglitazone to subcutaneous adipose tissue, Nanomedicine: Nanotechnology. Bio Med 13:559–568

    CAS  Google Scholar 

  38. Xu B, Jiang G, Yu W, Liu D, Liu Y, Kong X, Yao J (2017) Preparation of poly (lactic-co-glycolic acid) and chitosan composite nanocarriers via electrostatic self assembly for oral delivery of insulin. Mater Sci Eng, C 78:420–428

    Article  CAS  Google Scholar 

  39. Omid NJ, Javan NB, Dehpour A-R, Partoazar A, Tehrani MR, Dorkoosh F (2018) In-vitro and in-vivo cytotoxicity and efficacy evaluation of novel glycyl-glycine and alanyl-alanine conjugates of chitosan and trimethyl chitosan nano-particles as carriers for oral insulin delivery. Int J Pharm 535:293–307

    Article  Google Scholar 

  40. Zhang Y, Zhang L, Ban Q, Li J, Li C-H, Guan Y-Q (2018) Preparation and characterization of hydroxyapatite nanoparticles carrying insulin and gallic acid for insulin oral delivery, Nanomedicine: Nanotechnology. Biol Med 14:353–364

    CAS  Google Scholar 

  41. Kozuka C, Shimizu-Okabe C, Takayama C, Nakano K, Morinaga H, Kinjo A, Fukuda K, Kamei A, Yasuoka A, Kondo T (2017) Marked augmentation of PLGA nanoparticle-induced metabolically beneficial impact of γ-oryzanol on fuel dyshomeostasis in genetically obese-diabetic ob/ob mice. Drug Deliv 24:558–568

    Article  CAS  Google Scholar 

  42. Fullagar B, Rao W, Gilor C, Xu F, He X, Adin CA (2017) Nano-encapsulation of bilirubin in pluronic F127–chitosan improves uptake in β cells and increases islet viability and function after hypoxic Stress. Cell Transpl 26:1703–1715

    Article  Google Scholar 

  43. Maiti S, Mukherjee S, Datta R (2014) Core–shell nano-biomaterials for controlled oral delivery and pharmacodynamic activity of glibenclamide. Int J Biol Macromol 70:20–25

    Article  CAS  Google Scholar 

  44. Baig MMFA, Khan S, Naeem MA, Khan GJ, Ansari MT (2018) Vildagliptin loaded triangular DNA nanospheres coated with eudragit for oral delivery and better glycemic control in type 2 diabetes mellitus. Biomed Pharmacother 97:1250–1258

    Article  CAS  Google Scholar 

  45. Varanko AK, Chilkoti A (2019) Molecular and materials engineering for delivery of peptide drugs to treat type 2 diabetes. Adv Healthcare Mater 8:1801509

    Article  CAS  Google Scholar 

  46. Cho EY, Ryu J-Y, Lee HAR, Hong SH, Park HS, Hong KS, Park S-G, Kim HP, Yoon T-J (2019) Lecithin nano-liposomal particle as a CRISPR/Cas9 complex delivery system for treating type 2 diabetes. J Nanobiotech 17:19

    Article  Google Scholar 

  47. Rabiei M, Kashanian S, Samavati SS, Jamasb S, McInnes SJ (2019) Nanomaterial and advanced technologies in transdermal drug delivery. J Drug Target 1–12

  48. Ye Y, Yu J, Wen D, Kahkoska AR, Gu Z (2018) Polymeric microneedles for transdermal protein delivery. Adv Drug Deliv Rev 127:106–118

    Article  CAS  Google Scholar 

  49. Yu J, Wang J, Zhang Y, Chen G, Mao W, Ye Y, Kahkoska AR, Buse JB, Langer R, Gu Z, (2020) Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat Biomed Eng 1–8

  50. Rabiei M, Kashanian S, Bahrami G, Derakhshankhah H, Barzegari E, Samavati SS, McInnes SJ (2021) Dissolving microneedle-assisted long-acting liraglutide delivery to control type 2 diabetes and obesity. Eur J Pharm Sci 167:106040

    Article  CAS  Google Scholar 

  51. Chen G, Yu J, Gu Z (2019) Glucose-responsive microneedle patches for diabetes treatment. J Diabetes Sci Technol 13:41–48

    Article  Google Scholar 

  52. Zhang Y, Wang J, Yu J, Wen D, Kahkoska AR, Lu Y, Zhang X, Buse JB, Gu Z (2018) Bioresponsive microneedles with a sheath structure for H2O2 and pH cascade-triggered insulin delivery. Small 14:1704181

    Article  Google Scholar 

  53. Tong Z, Zhou J, Zhong J, Tang Q, Lei Z, Luo H, Ma P, Liu X (2018) Glucose-and H2O2-responsive polymeric vesicles integrated with microneedle patches for glucose-sensitive transcutaneous delivery of insulin in diabetic rats. ACS Appl Mater Interfaces 10:20014–20024

    Article  CAS  Google Scholar 

  54. Yu J, Qian C, Zhang Y, Cui Z, Zhu Y, Shen Q, Ligler FS, Buse JB, Gu Z (2017) Hypoxia and H2O2 dual-sensitive vesicles for enhanced glucose-responsive insulin delivery. Nano Lett 17:733–739

    Article  CAS  Google Scholar 

  55. Wang J, Ye Y, Yu J, Kahkoska AR, Zhang X, Wang C, Sun W, Corder RD, Chen Z, Khan SA (2018) Core–shell microneedle gel for self-regulated insulin delivery. ACS Nano 12:2466–2473

    Article  CAS  Google Scholar 

  56. Xu B, Jiang G, Yu W, Liu D, Zhang Y, Zhou J, Sun S, Liu Y (2017) H 2 O 2-responsive mesoporous silica nanoparticles integrated with microneedle patches for the glucose-monitored transdermal delivery of insulin. J Mater Chem B 5:8200–8208

    Article  CAS  Google Scholar 

  57. Fu Y, Liu P, Chen M, Jin T, Wu H, Hei M, Wang C, Xu Y, Qian X, Zhu W (2022) On-demand transdermal insulin delivery system for type 1 diabetes therapy with no hypoglycemia risks. J Colloid Interface Sci 605:582–591

    Article  CAS  Google Scholar 

  58. Chen W, Tian R, Xu C, Yung BC, Wang G, Liu Y, Ni Q, Zhang F, Zhou Z, Wang J (2017) Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy. Nat Commun 8:1–11

    Article  Google Scholar 

  59. Hu W, Su Y-W, Jiang Y-K, Fan W-D, Cheng S-Y, Tong Z-Z, Cen C, Jiang G-H (2022) Polymer vesicles with upper critical solution temperature for near-infrared light-triggered transdermal delivery of metformin in diabetic rats. Chin J Polym Sci 40:157–165

    Article  CAS  Google Scholar 

  60. Tsou YH, Wang B, Ho W, Hu B, Tang P, Sweet S, Zhang XQ, Xu X (2019) Nanotechnology-mediated drug delivery for the treatment of obesity and its related comorbidities. Adv Healthcare Mater 8:1801184

    Article  Google Scholar 

  61. Zhang Y, Liu Q, Yu J, Yu S, Wang J, Qiang L, Gu Z (2017) Locally induced adipose tissue browning by microneedle patch for obesity treatment. ACS Nano 11:9223–9230

    Article  CAS  Google Scholar 

  62. trial NCT 02827094 (i.e. enhanced epidermal antigen specific immunotherapy trial -1 EE-ASI-1

  63. Dul M, Nikolic T, Stefanidou M, McAteer M, Williams P, Mous J, Roep B, Kochba E, Levin Y, Peakman M (2019) Conjugation of a peptide autoantigen to gold nanoparticles for intradermally administered antigen specific immunotherapy. Int J Pharm 562:303–312

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soheila Kashanian or Morteza Rabiei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samavati, S.S., Kashanian, S., Derakhshankhah, H. et al. Nanoparticle application in diabetes drug delivery. J Nanopart Res 24, 178 (2022). https://doi.org/10.1007/s11051-022-05547-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05547-8

Keywords

Navigation