Skip to main content

Potential Nanomaterials for the Treatment and Management of Diabetes Mellitus

  • Chapter
  • First Online:
Nanomaterials for Sustainable Development

Abstract

Diabetes mellitus (DM) is an emergent, severe health issue, widely spread throughout the world that needs to be tackled with enormous concern. There has been great interest in the use of nanomaterials for the treatment and management of diabetes mellitus due to their versatile theranostic applications and improved patient compliance. Nanoformulations can deliver drugs at the targeted sites, in a controlled manner for a prolonged period. They reduce drug toxicity and enhance drug stability, solubility, absorption, permeation, and bioavailability. Lipid-based nanoformulation has shown great potential in delivering the active therapeutic ingredient to the intestinal lymphatic system, thus avoiding the first-pass metabolism and eliminating P-glycoprotein (P-gp) efflux and permeability-related issues. The use of nanocarriers can ameliorate the accumulation of ASOs in organs and tissues pertinent to diabetes and their delivery into a specific cell. Encapsulating insulin into nanocarrier can overcome problems like short half-life, low intestinal permeability and bioavailability. This chapter explores the therapeutic potential of advanced nanomedicines like liposomes, niosomes, nanocarriers, magnetic and polymeric NPs, carbon NPs, Au NPs, Ag NPs, and ASOs for the treatment of diabetes mellitus. Nanomaterials of hypoglycemic drugs can offer enhanced diabetes management along with the minimized threat of acute and chronic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li J, Xin M, Ma Z, Shi Y, Pan L (2021) Nanomaterials and their applications on bio-inspired wearable electronics. Nanotechnology 32(47). https://doi.org/10.1088/1361-6528/abe6c7. PMID: 33592596

  2. Ahmed F, Khan MA, Haider N, Ahmad MZ, Ahmad J (2022) Recent advances in theranostic applications of nanomaterials in cancer. Curr Pharm Des 28(2):133–150. https://doi.org/10.2174/1381612827666210916140627. PMID: 34530703

    Article  Google Scholar 

  3. Huang R, Zhou X, Chen G, Su L, Liu Z, Zhou P, Weng J, Min Y (2022) Advances of functional nanomaterials for magnetic resonance imaging and biomedical engineering applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 14(4):e1800. https://doi.org/10.1002/wnan.1800. Epub 2022 Apr 20. PMID: 35445588

  4. Nie X, Chen Z, Pang L, Wang L, Jiang H, Chen Y, Zhang Z, Fu C, Ren B, Zhang J (2020) Oral nano drug delivery systems for the treatment of type 2 diabetes mellitus: an available administration strategy for antidiabetic phytocompounds. Int J Nanomedicine 15:10215–10240

    Article  Google Scholar 

  5. Chrvala CA, Sherr D, Lipman RD (2016) Diabetes self-management education for adults with type 2 diabetes mellitus: a systematic review of the effect on glycemic control. Patient Educ Couns 99(6):926–943

    Google Scholar 

  6. Okemah J, Peng J, Quiñones M (2018) Addressing clinical inertia in type 2 diabetes mellitus: a review. Adv Ther 35(11):1735–1745

    Article  Google Scholar 

  7. Shyangdan DS, Uthman OA, Waugh N (2016) SGLT-2 receptor inhibitors for treating patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. BMJ Open 6(2):e009417

    Article  Google Scholar 

  8. Wong CY, Al-Salami H, Dass CR (2017) Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J Control Release 264:247–275

    Article  Google Scholar 

  9. Lin CH, Chen CH, Lin ZC, Fang JY (2017) Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 25:219–234

    Article  Google Scholar 

  10. Andreani T, de Souza AL, Kiill CP, Lorenzon EN, Fangueiro JF, Calpena AC, Chaud MV, Garcia ML, Gremiao MP, Silva AM et al. Preparation and characterization of PEG-coated silica nanoparticles for oral insulin delivery

    Google Scholar 

  11. Bahman F, Greish K, Taurin S (2019) Nanotechnology in insulin delivery for management of diabetes. Pharm Nanotechnol. 7(2):113–128

    Article  Google Scholar 

  12. Shao T, Yuan P, Zhu L, Xu H, Li X, He S, Li P, Wang G, Chen K (2019) Carbon nanoparticles inhibit Α-glucosidase activity and induce a hypoglycemic effect in diabetic mice. Molecules 24(18):3257

    Article  Google Scholar 

  13. Cui F, Shi K, Zhang L et al (2006) Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J Control Release 114:242–250

    Article  Google Scholar 

  14. Souto EB, Souto SB, Campos JR, Severino P, Pashirova TN, Zakharova LY, Silva AM, Durazzo A, Lucarini M, Izzo AA, Santini A (2019) Nanoparticle delivery systems in the treatment of diabetes complications. Molecules 24(23):4209

    Article  Google Scholar 

  15. Vellayappan MV, Jaganathan SK, Manikandan A (2016) Nanomaterials as a game changer in the management and treatment of diabetic foot ulcers. RSC Adv 6(115):114859–114878

    Article  Google Scholar 

  16. Choudhury H, Pandey M, Lim YQ, Low CY, Lee CT, Marilyn TCL, Loh HS, Lim YP, Lee CF, Bhattamishra SK, Kesharwani P, Gorain B (2020) Silver nanoparticles: Advanced and promising technology in diabetic wound therapy. Mater Sci Eng C Mater Biol Appl 112:110925

    Article  Google Scholar 

  17. Jahan S, Aqil M, Ahad A, Imam SS, Waheed A, Qadir A, Ali A (2022) Nanostructured lipid carrier for transdermal gliclazide delivery: development and optimization by Box-Behnken design. Inorg Nano-Metal Chem. https://doi.org/10.1080/24701556.2021.2025097

  18. Samed N, Sharma V, Sundaramurthy A (2018) Hydrogen bonded niosomes for encapsulation and release of hydrophilic and hydrophobic anti-diabetic drugs: an efficient system for oral anti-diabetic formulation. Appl Surf Sci 449:567–573

    Article  Google Scholar 

  19. Maritim S, Boulas P, Lin Y (2021) Comprehensive analysis of liposome formulation parameters and their influence on encapsulation, stability and drug release in glibenclamide liposomes. Int J Pharm 592:120051

    Article  Google Scholar 

  20. Sgorla D, Lechanteur A, Almeida A, Sousa F, Melo E, Bunhak É, Mainardes R, Khalil N, Cavalcanti O, Sarmento B (2018) Development and characterization of lipid-polymeric nanoparticles for oral insulin delivery. Expert Opin Drug Deliv 15(3):213–222

    Article  Google Scholar 

  21. Hussein J, Attia MF, El Bana M et al (2019) Solid state synthesis of docosahexaenoic acid-loaded zinc oxide nanoparticles as a potential antidiabetic agent in rats. Int J Biol Macromol 140:1305–1314. https://doi.org/10.1016/j.ijbiomac.2019.08.201108

    Article  Google Scholar 

  22. Yücel Ç, Karatoprak GŞ, Aktaş Y (2018) Nanoliposomal resveratrol as a novel approach to treatment of diabetes mellitus. J Nanosci Nanotechnol 18(6):3856–3864

    Article  Google Scholar 

  23. Tiwari SS, Wadher SJ, Gattani SG. Nanostructured lipid carriers of canagliflozin and a preparation method thereof, Indian patent no. 392029

    Google Scholar 

  24. Hasan AA, Madkor H, Wageh S (2013) Formulation and evaluation of metformin hydrochloride-loaded niosomes as controlled release drug delivery system. Drug Delivery 20(3–4):120–126

    Article  Google Scholar 

  25. Ebrahimi HA, Javadzadeh Y, Hamidi M, Jalali MB (2015) Repaglinide-loaded solid lipid nanoparticles: effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. Daru 23(1):46

    Article  Google Scholar 

  26. Nazief AM, Hassaan PS, Khalifa HM, Sokar MS, El-Kamel AH (2020) Lipid-based gliclazide nanoparticles for treatment of diabetes: formulation, pharmacokinetics, pharmacodynamics and subacute toxicity study. Int J Nanomed 15:1129–1148

    Article  Google Scholar 

  27. Alkaladi A, Abdelazim AM, Afifi M (2014) Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int J Mol Sci 15(2):2015–2023

    Article  Google Scholar 

  28. Ali LMA, Shaker SA, Pinol R, Millan A, Hanafy MY, Helmy MH, Kamel MA, Mahmoud SA (2020) Effect of superparamagnetic iron oxide nanoparticles on glucose homeostasis on type 2 diabetes experimental model. Life Sci 245:117361

    Article  Google Scholar 

  29. Zhao X, Zu Y, Zu S, Wang D, Zhang Y, Zu B (2010) Insulin nanoparticles for transdermal delivery: preparation and physicochemical characterization and in vitro evaluation. Drug Dev Ind Pharm 36(10):1177–1185

    Article  Google Scholar 

  30. Teng Z, Yu M, Ding Y, Zhang H, Shen Y, Jiang M, Liu P, Opoku-Damoah Y, Webster TJ, Zhou J (2019) Preparation and characterization of nimodipine loaded nanostructured lipid systems for enhanced solubility and bioavailability. Int J Nanomed 14:119–133

    Article  Google Scholar 

  31. Swidan SA, Mansour ZN, Mourad ZA, Elhesaisy NA, Mohamed NA, Bekheet MS et al (2018) DOE, formulation, and optimization of Repaglinide nanostructured lipid carriers. J App Pharm Sci 8(10):008–016

    Article  Google Scholar 

  32. Pandey SS, Patel MA, Desai DT, Patel HP, Gupta AR (2020) Bioavailability enhancement of repaglinide from transdermally applied nanostructured lipid carrier gel: optimization, in vitro and in vivo studies. J Drug Deliv Sci Technol 57:101731

    Google Scholar 

  33. Ilyas U, Asif M, Wang M, Altaf R, Zafar H et al. Nanocarrier based delivery to Pioglitazone for treatment of type 2 diabetes. Front Pharmacol 13:934156

    Google Scholar 

  34. Deb PK, Al-Attraqchi O, Chandrasekaran B, Paradkar A, Tekade RK (1990) Chapter 16—Protein/peptide drug delivery systems: practical considerations in pharmaceutical product development. In: Tekade RK (eds) Advances in pharmaceutical product development and research, basic fundamentals of drug delivery. Academic Press, pp 651–684

    Google Scholar 

  35. Spangler RS (1990) Insulin administration via liposomes. Diabetes Care 13(9):911–922

    Google Scholar 

  36. Amjadi S, Mesgari Abbasi M, Shokouhi B, Ghorbani M, Hamishehkar H (2019) Enhancement of therapeutic efficacy of betanin for diabetes treatment by liposomal nanocarriers. J Func Foods 59:119–128

    Article  Google Scholar 

  37. Dwivedi N, Arunagirinathan MA, Sharma S, Bellare J (2010) Silica-coated liposomes for insulin delivery. J Nanomater 2010:8. Article ID 652048

    Google Scholar 

  38. Ye Q, Asherman J, Stevenson M et al (2000) DepoFoam™ technology: a vehicle for controlled delivery of protein and peptide drugs. J Control Release 64:155–166

    Article  Google Scholar 

  39. Karathanasis E, Bhavane R, Annapragada AV (2006) Triggered release of inhaled insulin from the agglomerated vesicles: pharmacodynamic studies in rats. J Control Release 113:117–127

    Article  Google Scholar 

  40. Pardakhty A, Moazeni E, Varshosaz J, Hajhashemi V, Najafabadi AR (2011) Pharmacokinetic study of niosome-loaded insulin in diabetic rats. DARU J Pharmaceu Sci 19:404–411

    Google Scholar 

  41. Pardakhty A, Varshosaz J, Rouholamini A (2007) In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int J Pharm 328:130–141

    Article  Google Scholar 

  42. Kumari S, Kamboj VK, Rajpoot D, Teotia AK, Verma PK, Singh GN (2019) The unprecedented role of gold nanomaterial in diabetes management. Recent Pat Drug Deliv Formul 13(3):219–227

    Article  Google Scholar 

  43. Omolaja AA, Pearce B, Omoruyi SI, Badmus JA, Ismail E, Marnewick J, Hussein AA (2021) The potential of chalcone-capped gold nanoparticles for the management of diabetes mellitus. Surf Interf 25:101251

    Article  Google Scholar 

  44. Opris R, Tatomir C, Olteanu D, Moldovan R, Moldovan B, David L, Nagy A, Decea N, Kiss ML, Filip GA (2017) The effect of Sambucus nigra L. extract and phytosinthesized gold nanoparticles on diabetic rats. Coll Surf B Biointerf 150:192–200

    Google Scholar 

  45. Nair PA, Sreenivasan K (2016) Non enzymatic colorimetric detection of glucose using cyanophenyl boronic acid included β-cyclodextrin stabilized gold nanoparticles. Anal Methods 8:2082–2087. https://doi.org/10.1039/C5AY02716K

  46. Vernet-Crua A, Medina-Cruz D, Mostafavi E, Benko A, Cholula-Diaz JL, Saravanan M, Vahidi H, Barabadi H, Webster TJ (2021) Chapter 23—Nanobiosensors for theranostic applications. In: Anand K, Saravanan M, Chandrasekaran B, Kanchi S, Panchu SJ, Chen Q (eds) Handbook on nanobiomaterials for therapeutics and diagnostic applications. Elsevier, pp 511–543. ISBN 9780128210130

    Google Scholar 

  47. Chen S, Sbuh N, Veedu RN (2021) Antisense oligonucleotides as potential therapeutics for type 2 diabetes. Nucleic Acid Ther 31(1):39–57

    Article  Google Scholar 

  48. Le L-A, Hunter RJ, Preedy VR (eds) (2012) Nanotechnology and nanomedicine in diabetes, 1st ed. CRC Press, pp 59–65

    Google Scholar 

  49. Kesharwani P, Gorain B, Low SY, Tan SA, Ling ECS, Lim YK, Chin CM, Lee PY, Lee CM, Ooi CH, Choudhury H, Pandey M (2018) Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res Clin Pract 136:52–77

    Article  Google Scholar 

  50. Liu Y, Tee JK, Chiu GN (2015) Dendrimers in oral drug delivery application: current explorations, toxicity issues and strategies for improvement. Curr Pharm Des 21(19):2629–2642

    Article  Google Scholar 

  51. Labieniec-Watala M, Przygodzki T, Sebekova K, Watala C (2014) Can metabolic impairments in experimental diabetes be cured with poly(amido)amine (PAMAM) G4 dendrimers? In the search for minimizing of the adverse effects of PAMAM administration. Int J Pharm 464(1–2):152–167

    Article  Google Scholar 

  52. Dong Z, Hamid KA, Gao Y, Lin Y, Katsumi H, Sakane T, Yamamoto A (2011) Polyamidoamine dendrimers can improve the pulmonary absorption of insulin and calcitonin in rats. J Pharm Sci 100(5):1866–1878

    Article  Google Scholar 

  53. Le L-A, Hunter RJ, Preedy VR (eds) (2012) Nanotechnology and nanomedicine in diabetes, 1st ed. CRC Press, pp 186–192. https://doi.org/10.1201/b11775

  54. Chen M, Quan G, Sun Y, Yang D, Pan X, Wu C (2020) Nanoparticles-encapsulated polymeric microneedles for transdermal drug delivery. J Control Release 325:163–175

    Article  Google Scholar 

  55. Bai Q, Han K, Dong K, Zheng C, Zhang Y, Long Q, Lu T (2020) Potential applications of nanomaterials and technology for diabetic wound healing. Int J Nanomedicine 15:9717–9743

    Article  Google Scholar 

  56. Maleki H, Koshnevisan K, Mahmoud S, Baharifar H, Doostan M et al (2021) Nanofiber-based systems intended for diabetes. J Nanobiotechnology 19:317. https://doi.org/10.1186/s12951-021-01065-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shradha S. Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, S.S., Wadher, S.J. (2023). Potential Nanomaterials for the Treatment and Management of Diabetes Mellitus. In: Mane, R.S., Sharma, R.P., Kanakdande, A.P. (eds) Nanomaterials for Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-99-1635-1_11

Download citation

Publish with us

Policies and ethics