Skip to main content

Advertisement

Log in

Cu2O/CuO heterojunction formed by thermal oxidation and decorated with Pt co-catalyst as an efficient photocathode for photoelectrochemical water splitting

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Cuprous oxide (Cu2O) is a highly efficient p-type semiconductor, which has an appropriate band gap and favorable energy band positions, making it ideal to be considered as a photocathode material for photoelectrochemical (PEC) water splitting. However, the theoretical efficiency of Cu2O is still unachievable in practical situations due to the low separation rate of photogenerated electron–hole pairs. In this work, the surface of the Cu2O film was directly converted to CuO by thermal oxidation to form a Cu2O/CuO heterojunction with fewer defects at the interface. The PEC tests suggest that the Cu2O/CuO photocathode exhibits a photocurrent density of − 1.99 mA/cm2 at 0 V vs. RHE benefit by the heterojunction with a good interface for efficient charge separation and transfer, which is 3.3 times higher than Cu2O (− 0.6 mA/cm2). Furthermore, the performance of Cu2O/CuO can be greatly enhanced by depositing a Pt co-catalyst layer. The photocurrent density of Cu2O/CuO/Pt composites was 4.6 times higher than pristine Cu2O. More exciting, the stability of Cu2O with the CuO and Pt co-catalyst only presents a decline of 20% under illumination for 3600 s. This work points to the effective means of thermal oxidation that can form a heterojunction with relatively fewer interface defects and provides a strategy for the performance improvement of Cu2O photocathode in PEC water reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ager JW, Shaner MR, Walczak KA, Sharp ID, Ardo S (2015) Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ Sci 8:2811–2824

    Article  CAS  Google Scholar 

  • Cai QJ, Liu ZF, Han CC, Tong ZF, Ma CH (2019) CuInS2/Sb2S3 heterostructure modified with noble metal co-catalyst for efficient photoelectrochemical water splitting. J Alloy Compd 795:319–326

    Article  CAS  Google Scholar 

  • Cox CR, Lee JZ, Nocera DG, Buonassisi T (2014) Ten-percent solar-to-fuel conversion with nonprecious materials. Proc Natl Acad Sci USA 111:14057–14061

    Article  CAS  Google Scholar 

  • Dai XC, Huang MH, Li YB, Li T, Zhang BB, He Y, Xiao G, Xiao FX (2019) Regulating spatial charge transfer over intrinsically ultrathin-carbon-encapsulated photoanodes toward solar water splitting. Journal of Materials Chemistry A 7:2741–2753

    Article  CAS  Google Scholar 

  • Dashtian K, Hajati S, Ghaedi M (2021) Ti-based solid-state imprinted-Cu2O/CuInSe2 heterojunction photoelectrochemical platform for highly selective dopamine monitoring. Sens Actuators, B Chem 326:75918–74831

    Article  Google Scholar 

  • Dittrich T, Duzhko V, Koch F, Kytin V, Rappich J (2002) Trap-limited photovoltage in ultrathin metal oxide layers. Phys Rev B 65:155319–155324

    Article  Google Scholar 

  • Dittrich T, Mora-Seró I, García-Belmonte G, Bisquert J (2006) Temperature dependent normal and anomalous electron diffusion in porous TiO2 studied by transient surface photovoltage. Phys Rev B 73:045407–045412

    Article  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  • Han JH, Zhang SC, Song QG, Yan HY, Kang JH, Guo YR, Liu ZF (2021) The synergistic effect with S-vacancies and built-in electric field on a TiO2/MoS2 photoanode for enhanced photoelectrochemical performance. Sustainable Energy Fuels 5:509–517

    Article  CAS  Google Scholar 

  • Hu CC, Nian JN, Teng H (2008) Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3. Sol Energy Mater Sol Cells 92:1071–1076

    Article  CAS  Google Scholar 

  • Kargar A, Jing Y, Kim SJ (2013) ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano 7:11112–11120

    Article  CAS  Google Scholar 

  • Kim TW, Choi KS (2014) Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalyst for solar water splitting. Science 34:990–994

    Article  Google Scholar 

  • Li C, Hisatomi T, Watanabe O, Nakabayashi M, Shibata N, Domen K, Delaunay JJ (2015) Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer. Energy Environ Sci 8:1493–1500

    Article  CAS  Google Scholar 

  • Li YT, Liu ZF, Li JW, Ruan MN, Guo ZG (2020a) An effective strategy of constructing multi-junction structure by integrating a heterojunction and a homojunction to promote charge separation and transfer efficiency of WO3. Journal of Materials Chemistry A 8:6256–6267

    Article  CAS  Google Scholar 

  • Li Z, Yang H, Hu M, Zhang L, Ge S, Cui K, Yu J (2020b) Cathode photoelectrochemical paper device for microRNA detection based on cascaded photoactive structures and Hemin/Pt nanoparticle-decorated DNA dendrimers. ACS Appl Mater Interfaces 12:17177–17184

    Article  CAS  Google Scholar 

  • Li X, Wan JQ, Ma YW, Wang Y, Li XT (2021) Study on cobalt-phosphate (Co-Pi) modified BiVO4/Cu2O photoanode to significantly inhibit photochemical corrosion and improve the photoelectrochemical performance. Chem Eng J 404:127054

    Article  CAS  Google Scholar 

  • Liu ZF, Zhou M (2020) The co-modification with cost-effective nickel oxides and nickel sulfides on CuInS2 nanosheets photocathode for enhanced photoelectrochemical performance. ACS Sustainable Chemistry & Engineering 8:512–519

    Article  CAS  Google Scholar 

  • Mao Y, He J, Sun X, Li W, Lu X, Gan J, Liu Z, Gong L, Chen J, Liu P, Tong Y (2012) Electrochemical synthesis of hierarchical Cu2O stars with enhanced photoelectrochemical properties. Electrochemical Acta 62:1–7

    Article  CAS  Google Scholar 

  • Morales-Guio CG, Tilley SD, Vrubel H, Gratzel M, Hu X (2014) Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphine catalyst. Nat Commun 5:3059

    Article  Google Scholar 

  • Mora-Seró I, Dittrich T, Belaidi A, Garcia-Belmonte G, Bisquert J (2005) Observation of diffusion and tunneling recombination of dye-photoinjected electrons in ultrathin TiO2 layers by surface photovoltage transients. J Phys Chem B 109:14932–14938

    Article  Google Scholar 

  • Pan L, Kim JH, Mayer MT, Son MK, Ummadisingu A, Lee JS, Hagfeldt A, Luo J, Grätzel M (2018) Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nat Catal 1:412

    Article  CAS  Google Scholar 

  • Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reductions. Nat Mater 10:456–461

    Article  CAS  Google Scholar 

  • Paracchino A, Mathews N, Hisatomi T, Stefik M, Tilley SD, Gratzel M (2012) Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability. Energy Environ Sci 5:8673–8681

    Article  CAS  Google Scholar 

  • Tang H, Matin MA, Wang H, Sudhakar S, Chen L, Al-Jassim MM, Yan Y (2012) Enhancing the stability of CuO thin-film photoelectrodes by Ti alloying. J Electron Mater 41:3062–3067

    Article  Google Scholar 

  • Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi B 15:627–637

    Article  CAS  Google Scholar 

  • Wang L, Tao M (2007) Fabrication and characterization of p-n homojunctions in cuprous oxide by electrochemical deposition. Electrochem Solid-State Lett 10:H248–H250

    Article  CAS  Google Scholar 

  • Wang B, Li R, Zhang Z, Zhang W, Yan X, Wu X, Cheng G, Zheng R (2017) Novel Au/Cu2O multi-shelled porous heterostructures for enhanced efficiency of photoelectrochemical water splitting. Journal of Materials Chemistry A 5:14415–14421

    Article  CAS  Google Scholar 

  • Wang Q, Niu T, Wang L, Yan C, Huang J, He J, She H, Su B, Bi Y (2018a) FeF2/BiVO4 heterojunction photoelectrodes and evaluation of its photoelectrochemical performance for water splitting. Chem Eng J 337:506–514

    Article  CAS  Google Scholar 

  • Wang T, Wei Y, Chang X, Li C, Li A, Liu S, Zhang J, Gong J (2018b) Homogeneous Cu2O p-n junction photocathodes for solar water splitting. Appl Catal B 226:31–37

    Article  CAS  Google Scholar 

  • Wei HM, Gong HB, Chen L, Zi M, Cao BQ (2012) Photovoltaic efficiency enhancement of Cu2O solar cells achieved by controlling homojunction orientation and surface microstructure. The Journal of Physical Chemistry C 116:10510–10515

    Article  CAS  Google Scholar 

  • Yang Y, Xu D, Wu QY, Diao P (2016) Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction. Sci Rep 6:35158

    Article  CAS  Google Scholar 

  • Ye M, Gong J, Lai Y, Lin C, Lin Z (2012) High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. J Am Chem Soc 134:15720–15723

    Article  CAS  Google Scholar 

  • Zhang C, Shao M, Ning F, Xu S, Li Z, Wei M, Evans DG, Duan X (2015) Au nanoparticles sensitized ZnO nanorod@nanoplatelet core–shell arrays for enhanced photoelectrochemical water splitting. Nano Energy 12:231–239

    Article  Google Scholar 

  • Zhang SC, Chen D, Yan WG, Liu ZF (2020) An efficient hole transfer pathway on hematite integrated by ultrathin Al2O3 interlayer and novel CuCoOx cocatalyst for efficient photoelectrochemical water oxidation. Applied Catalysis B: Environmenta 277:119197

    Article  CAS  Google Scholar 

  • Zhang L, Zhang M, Song X, Wang H, Bian Z (2020) One-step synthesis of MnOx/g-C3N4 nanocomposites for enhancing the visible light photoelectrochemical oxidation performance. Chem Eng J 399:125825

    Article  CAS  Google Scholar 

  • Zhang SC, Chen D, Guo ZG, Ruan MN, Liu ZF (2021) Novel strategy for efficient water splitting through pyro-electric and pyro-photo-electric catalysis of BaTiO3 by using thermal resource and solar energy. Applied Catalysis B: Environmental 284:119686

    Article  CAS  Google Scholar 

  • Zhang S C, Zhang B, Chen D, Guo Z G, Ruan M N, Liu Z F. Promising pyro-photo-electric catalysis in NaNbO3 via integrating solar and cold-hot alternation energy in pyroelectric-assisted photoelectrochemical system. Nano Energy, 2021, 79: 105485.

  • Zhao C, Fu HT, Yang XH, Xiong SX, Han DZ, An XZ (2021) Adsorption and photocatalytic performance of Au nanoparticles decorated porous Cu2O nanospheres under simulated solar light irradiation. Applied Surface Science 545:149014

    Article  CAS  Google Scholar 

  • Zhou M, Guo Z, Liu Z (2020) FeOOH as hole transfer layer to retard the photocorrosion of Cu2O for enhanced photoelectrochemical performance. Applied Catalysis B: Environmental 260:118213

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge financial support from the Open Foundation of Hubei Collaborative Innovation Center for High-efficient Utilization of Solar Energy (No. HBSKFZD2017001) and the Science Foundation of the Hubei University of Technology (No. CPYF2017007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1104 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Liu, Z., Han, C. et al. Cu2O/CuO heterojunction formed by thermal oxidation and decorated with Pt co-catalyst as an efficient photocathode for photoelectrochemical water splitting. J Nanopart Res 23, 268 (2021). https://doi.org/10.1007/s11051-021-05383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-021-05383-2

Keywords

Navigation