Skip to main content
Log in

Computational study of plasma-assisted photoacoustic response from gold nanoparticles irradiated by off-resonance ultrafast laser

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The gold nanoparticles (AuNPs) are capable of enhancing the incident laser field in the form of scattered near field for even an off-resonance irradiation where the incident laser wavelength is far away from the localized surface plasmon resonance (LSPR). If the intensity of the pulse laser is large enough, this capability can be employed to generate a highly localized free electron (plasma) in the vicinity of the particles. The generated plasma can absorb more energy during the pulse, and this energy deposition can be considered as an energy source for structural mechanics calculations in the surrounding media to generate a photoacoustic (PA) signal. To show this, in this paper, we model plasma-mediated PA pressure wave propagation from a 100-nm AuNPs and the surrounding media irradiated by an ultrashort pulse laser. In this model, the AuNP is immersed in water and the laser pulse width is ranging from 70 fs to 2 ps at the wavelength of 800 nm (off-resonance). Our results qualitatively show the substantial impact of the energy deposition in plasma on the PA signal through boosting the pressure amplitudes up to ∼1000 times compared to the conventional approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal A, Huang SW, O’Donnell M, Day KC, Day M, Kotov N, Ashkenazi S (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 102:064701. doi:10.1063/1.2777127

    Article  Google Scholar 

  • Ali H, Behafarid D, Adam B, Adrien D, Michel M (2016) Computational characterization of plasma effects in ultrafast laser irradiation of spherical gold nanostructures for photothermal therapy. J Phys D Appl Phys 49:105401

    Article  Google Scholar 

  • Andreev VG, Karabutov AA, Oraevsky AA (2003) Detection of ultrawide-band ultrasound pulses in optoacoustic tomography. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on 50:1383–1390. doi:10.1109/TUFFC.2003.1244756

    Article  Google Scholar 

  • Balling P, Schou J (2013) Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films. Rep Prog Phys 76:036502

    Article  Google Scholar 

  • Boulais É, Lachaine R, Meunier M (2012) Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation. Nano Lett 12:4763–4769. doi:10.1021/nl302200w

    Article  Google Scholar 

  • Boutopoulos C, Hatef A, Fortin-Deschenes M, Meunier M (2015) Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser. Nanoscale 7:11758–11765. doi:10.1039/C5NR02721G

    Article  Google Scholar 

  • Boutopoulos C, Dagallier A, Sansone M, Blanchard-Dionne A-P, Lecavalier-Hurtubise E, Boulais E, Meunier M (2016) Photon-induced generation and spatial control of extreme pressure at the nanoscale with a gold bowtie nano-antenna platform. Nanoscale 8:17196–17203. doi:10.1039/C6NR03888C

    Article  Google Scholar 

  • Brown M, Arnold C (2010) Fundamentals of laser-material interaction and application to multiscale surface modification. In: Sugioka K, Meunier M, Piqué A (eds) Laser precision microfabrication, vol 135. Springer Series in Materials Science. Springer, Berlin Heidelberg, pp 91–120. doi:10.1007/978-3-642-10523-4_4

    Chapter  Google Scholar 

  • Changhui L, Lihong VW (2009) Photoacoustic tomography and sensing in biomedicine. Phys Med Biol 54:R59

    Article  Google Scholar 

  • Chen Y-S, Frey W, Aglyamov S, Emelianov S (2012) Environment-dependent generation of photoacoustic waves from plasmonic nanoparticles. Small 8:47–52. doi:10.1002/smll.201101140

    Article  Google Scholar 

  • COMSOL Multiphysics (2013) Acoustic module user’s guide, version 4.3b

  • Copland JA, Eghtedari M, Popov VL, Kotov N, Mamedova N, Motamedi M, Oraevsky AA (2004) Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. Mol Imaging Biol 6:341–349. doi:10.1016/j.mibio.2004.06.002

    Article  Google Scholar 

  • Ermilov SA et al (2009) Laser optoacoustic imaging system for detection of breast cancer. BIOMEDO 14:024007–024014. doi:10.1117/1.3086616

    Google Scholar 

  • Hashimoto S, Werner D, Uwada T (2012) Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J Photochem Photobiol C: Photochem Rev 13:28–54. doi:10.1016/j.jphotochemrev.2012.01.001

    Article  Google Scholar 

  • Hatef A et al (2015) Analysis of photoacoustic response from gold–silver alloy nanoparticles irradiated by short pulsed laser in water. J Phys Chem C 119:24075–24080. doi:10.1021/acs.jpcc.5b08359

    Article  Google Scholar 

  • Jiang H (2015) Photoacoustic tomography. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Johnson PB, Christy RW (1972) Optical constants of the Noble metals. Phys Rev B 6:4370–4379

    Article  Google Scholar 

  • Korenchenko AE, Beskachko VP (2008) Determining the shear modulus of water in experiments with a floating disk. J Appl Mech Tech Phys 49:80–83. doi:10.1007/s10808-008-0011-9

    Article  Google Scholar 

  • Ku G, Wang X, Xie X, Stoica G, Wang LV (2005) Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography. Appl Opt 44:770–775. doi:10.1364/AO.44.000770

    Article  Google Scholar 

  • Masim FCP et al (2016) Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation. Opt Express 24:14781–14792. doi:10.1364/OE.24.014781

    Article  Google Scholar 

  • Moon H et al (2015) Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging. ACS Nano 9:2711–2719. doi:10.1021/nn506516p

    Article  Google Scholar 

  • Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotech 23:313–320

    Article  Google Scholar 

  • Prost A, Poisson F, Bossy E (2015) Photoacoustic generation by a gold nanosphere: from linear to nonlinear thermoelastics in the long-pulse illumination regime. Phys Rev B 92:115450

    Article  Google Scholar 

  • Sajjadi AY, Mitra K, Guo Z (2013) Thermal analysis and experiments of laser-tissue interactions: a review 44:345–388. doi:10.1615/HeatTransRes.2012006425

  • Sheu Y-L, Li P-C (2008) Simulations of photoacoustic wave propagation using a finite-difference time-domain method with Berenger’s perfectly matched layers. J Acoust Soc Am 124:3471–3480. doi:10.1121/1.3003087

    Article  Google Scholar 

  • Vogel A, Noack J, Huttman G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B Lasers Opt 81:1015–1047

    Article  Google Scholar 

  • Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotech 19:316–317

    Article  Google Scholar 

  • Yoon SJ, Murthy A, Johnston KP, Sokolov KV, Emelianov SY (2012) Thermal stability of biodegradable plasmonic nanoclusters in photoacoustic imaging. Opt Express 20:29479–29487. doi:10.1364/OE.20.029479

    Article  Google Scholar 

  • Yousef Sajjadi A, Mitra K, Grace M (2011) Ablation of subsurface tumors using an ultra-short pulse laser. Opt Lasers Eng 49:451–456. doi:10.1016/j.optlaseng.2010.11.020

    Article  Google Scholar 

  • Zhou Y, Yao J, Wang LV (2016) Tutorial on photoacoustic tomography. BIOMEDO 21:061007–061007. doi:10.1117/1.JBO.21.6.061007

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Adrien Dagallier for the useful dissections and editing of the manuscript. The authors are also grateful to Prof. Michel Meunier, the director of Laser Processing and Plasmonics Laboratory at École Polytechnique de Montréal, for sharing their facilities including the computational servers and required software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Hatef.

Ethics declarations

Funding

This study was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) with award number RGPIN-2016-03826.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatef, A., Darvish, B. & Sajjadi, A.Y. Computational study of plasma-assisted photoacoustic response from gold nanoparticles irradiated by off-resonance ultrafast laser. J Nanopart Res 19, 67 (2017). https://doi.org/10.1007/s11051-017-3776-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3776-z

Keywords

Navigation