Skip to main content
Log in

Core–corona PSt/P(BA–AA) composite particles by two-stage emulsion polymerization

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Raspberry-shaped composite particles with polystyrene (PSt) as core and poly(n-butyl acrylate-co-acrylic acid) (P(BA–AA)) as corona were synthesized via emulsion polymerization. The random copolymer, P(BA–AA), was pre-prepared and used as a polymeric surfactant, its emulsifying properties adjusted by changing the mass ratio of BA and AA. The morphology of the resulting core–corona composite particles, P(St/P(BA–AA)), could be regulated and controlled by varying the concentrations of P(BA–AA) or the mass ratio of BA:AA in P(BA–AA). The experimental results indicate that 3.0–6.0 wt% of P(BA–AA) is required to obtain stable composite emulsions, and P(BA–AA) with a mass ratio of BA:AA = 1:2 is able to generate distinct core–corona structures. A mechanism of composite particle formation is proposed based on the high affinity between the PSt core and the hydrophobic segments of P(BA–A). The regular morphology of the colloidal film is expected to facilitate potential application of core–corona particles in the field of light scattering. Furthermore, the diversity of core–corona particles can be expanded by replacing P(BA–AA) corona particles with other amphiphilic particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amadeo F, Murlel B, Dominque B (2003) Optimization of a polymeric HPLC phase: poly(glycidyl methacrylate–co-ethylene dimethacrylate): influence of the polymerization conditions on the pore structure of macroporous beads. React Funct Polym 56(2):123–136

    Article  Google Scholar 

  • Aramendia E, Mallegol J, Jeynes C et al (2003) Distribution of surfactants near acrylic latex film surfaces: a comparison of conventional and reactive surfactants (surfmers). Langmuir 19(8):3212–3221

    Article  Google Scholar 

  • Chang Y, Mccormick CL (1993) Water-soluble copolymers. 49. Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl (2-acrylamidoethyl) ammonium bromide on the solution behavior of associating acrylamide copolymers. Macromolecules 26(22):6121–6126

    Article  Google Scholar 

  • Chen QW, Bahnemann DW (2000) Reduction of carbon dioxide by magnetite: implications for the primordial synthesis of organic molecules. J Am Chem Soc 122(5):970–971

    Article  Google Scholar 

  • Chen M, Wu L, Zhou S et al (2004) Synthesis of core–corona PMMA/SiO2 nanocomposite particles via a surfactant-free method. Macromolecules 37(25):9613–9619

    Article  Google Scholar 

  • Chen M, Zhou S, You B et al (2005) A novel preparation method of core–corona PMMA/SiO2 hybrid microspheres. Macromolecules 38(15):6411–6417

    Article  Google Scholar 

  • Chenal M, Rieger J, Philippe A et al (2014) High yield preparation of all-organic core–corona particles by heterocoagulation via hydrogen bonding interaction. Polymer 55(16):3516–3524

    Article  Google Scholar 

  • Chung JE, Yokoyama M, Aoyagi T et al (1998) Effect of molecular architecture of hydrophobically modified poly (N-isopropylacrylamide) on the formation of thermoresponsive core–shell micellar drug carriers. J Control Release 53(1):119–130

    Article  Google Scholar 

  • Du X, Liu X, Chen H et al (2009) Facile fabrication of core–corona composite nanoparticles and their application as building blocks for constructing superhydrophilic coatings. J Phys Chem C 113(21):9063–9070

    Article  Google Scholar 

  • Fleming MS, Mandal TK, Walt DR (2001) Nanosphere-microsphere assembly: methods for core–shell materials preparation. Chem Mater 13(6):2210–2216

    Article  Google Scholar 

  • Fujibayashi T, Okubo M (2007) Preparation and thermodynamic stability of micron-sized, monodisperse composite polymer particles of disc-like shapes by seeded dispersion polymerization. Langmuir 23(15):7958–7962

    Article  Google Scholar 

  • Gadelle F, Koros WJ, Schechter RS (1995) Solubilization of aromatic solutes in block copolymers. Macromolecules 28(14):4883–4892

    Article  Google Scholar 

  • Huang H, Liu H (2010) Synthesis of the raspberry-like PS/PAN particles with anisotropic properties via seeded emulsion polymerization initiated by γ-ray radiation. J Polym Sci Part A 48(22):5198–5205

    Article  Google Scholar 

  • Jiang X, Wang Y, Zhang W et al (2006) Raspberry-like aggregates containing secondary nanospheres of polystyrene-block-poly (4-vinylpyridine) micelles. Macromol Rapid Commun 27(21):1833–1837

    Article  Google Scholar 

  • Li G, Yang X, Bai F et al (2006a) Core–corona composite polymer particles by self-assemble heterocoagulation based on a charge compensation process. J Colloid Interf Sci 297(2):705–710

    Article  Google Scholar 

  • Li R, Yang X, Li G et al (2006b) Core–corona polymer composite particles by self-assembled heterocoagulation based on a hydrogen-bonding interaction. Langmuir 22(19):8127–8133

    Article  Google Scholar 

  • Li G, Yang X, Wang J (2008) Core–corona polymer composite particles via electrostatic heterocoagulation. Colloids Surf A 322(1):192–198

    Article  Google Scholar 

  • Liu YD, Fang FF, Choi HJ (2010) Core–shell structured semiconducting PMMA/polyaniline snowman-like anisotropic microparticles and their electrorheology. Langmuir 26(15):12849–12854

    Article  Google Scholar 

  • Minami H, Mizuta Y, Suzuki T (2012) Preparation of core–corona polymer particles by a heterocoagulation technique utilizing hydrogen bonding interactions between steric stabilizers. Langmuir 29(2):554–560

    Article  Google Scholar 

  • Ming W, Wu D, van Benthem R et al (2005) Superhydrophobic films from core–corona particles. Nano Lett 5(11):2298–2301

    Article  Google Scholar 

  • Mock EB, De Bruyn H, Hawkett BS et al (2006) Synthesis of anisotropic nanoparticles by seeded emulsion polymerization. Langmuir 22(9):4037–4043

    Article  Google Scholar 

  • Mohanraj VJ, Chen Y (2007) Nanoparticles-a review. Trop J Pharm Res 5(1):561–573

    Article  Google Scholar 

  • Morishima Y, Nomura S, Ikeda T et al (1995) Characterization of unimolecular micelles of random copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate and methacrylamides bearing bulky hydrophobic substituents. Macromolecules 28(8):2874–2881

    Article  Google Scholar 

  • Müller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev 47(1):3–19

    Article  Google Scholar 

  • Noda T, Hashidzume A, Morishima Y (2000) Micelle formation of random copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate and a nonionic surfactant macromonomer in water as studied by fluorescence and dynamic light scattering. Macromolecules 33(10):3694–3704

    Article  Google Scholar 

  • Okubo M, Miyachi N, Lu Y (1994) Variation of surface unevenness of anomalous composite polymer particles produced by the stepwise heterocoagulation of small particles onto large particle by heat treatment. Colloid Polym Sci 272(3):270–275

    Article  Google Scholar 

  • Okubo M, Murakami Y, Fujiwara T (1996) Formation mechanism of anomalous “golf ball-like” composite polymer particles by seeded emulsion polymerization. Colloid Polym Sci 274(6):520–524

    Article  Google Scholar 

  • Okubo M, Fujiwara T, Yamaguchi A (1998) Morphology of anomalous polystyrene/polybutyl acrylate composite particles produced by seeded emulsion polymerization. Colloid Polym Sci 276(2):186–189

    Article  Google Scholar 

  • Peng B, Vutukuri HR, van Blaaderen A et al (2012) Synthesis of fluorescent monodisperse non-spherical dumbbell-like model colloids. J Mater Chem 22(41):21893–21900

    Article  Google Scholar 

  • Sandkuhler P, Sefcik J, Lattuada M et al (2003) Modeling structure effects on aggregation kinetics in colloidal dispersions. Am Inst Chem Eng J 49(6):1542–1555

    Article  Google Scholar 

  • Schmolka IR (1977) A review of block polymer surfactants. J Am Oil Chem Soc 54(3):110–116

    Article  Google Scholar 

  • Schrade A, Cao Z, Landfester K et al (2011) Preparation of core–corona nanocapsules by the combination of pickering emulsification and solvent displacement technique. Langmuir 27(11):6689–6700

    Article  Google Scholar 

  • Sun Y, Yin Y, Chen M et al (2013) One-step facile synthesis of monodisperse core–corona P (St–MPS–AA) colloidal particles. Polym Chem 4(10):3020–3027

    Article  Google Scholar 

  • Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Controll Release 73(2):137–172

    Article  Google Scholar 

  • Xie D, Ren X, Xie Y et al (2016) Large-scale synthesis of monodisperse red blood cell (RBC)- like polymer particles. ACS Macro Letter 5:174–176

    Article  Google Scholar 

  • Yamaguchi K, Ito M, Taniguchi T et al (2004) Preparation of core–shell composite polymer particles by a novel heterocoagulation based on hydrophobic interaction. Colloid Polym Sci 282(4):366–372

    Article  Google Scholar 

  • Yamamoto H, Morishima Y (1999) Effect of hydrophobe content on intra-and interpolymer self-associations of hydrophobically modified poly (sodium 2-(acrylamido)- 2-methylpropanesulfonate) in water. Macromolecules 32(22):7469–7475

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Science and Technology Planning Project of Guangdong Province, China (2015A010105008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinya Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, D., Ren, X., Zhang, X. et al. Core–corona PSt/P(BA–AA) composite particles by two-stage emulsion polymerization. J Nanopart Res 18, 72 (2016). https://doi.org/10.1007/s11051-016-3379-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3379-0

Keywords

Navigation