Skip to main content
Log in

Highly dispersive nano-TiO2 in situ growing on functional graphene with high photocatalytic activity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We present a novel approach to prepare highly dispersive nano-TiO2 by in situ growth on functional graphene (FG) via impregnation-hydrothermal method. The functional graphene was obtained by means of triethanolamine to modify graphene oxide. The characterization results collected by Fourier-transform infrared spectra, transmission electron microscope, X-ray diffraction, and X-ray photoelectron spectroscopy showed that nano-TiO2 particles with anatase phase and a narrow size distribution (the average particle size is 5 nm) were dispersed on the surface of FG uniformly. Then, the photocatalytic activity of as-prepared catalyst under UV light was evaluated, and the results showed that it possessed better photocatalytic activity than pure TiO2 and TiO2 on GO prepared by similar method. In addition, the as-prepared photocatalyst revealed considerable photocatalytic ability under visible light.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271. doi:10.1126/science.1061051

    Article  Google Scholar 

  • Bai X, Huang X, Zhang X, Hua Z, Wang C, Qin Q, Zhang Q (2014) TiO2-graphene nanoparticle based electrochemical sensor for the bimodal-response detection of 4-chlorophenol. RSC Adv 4:13461–13468. doi:10.1039/C3RA48065H

    Article  Google Scholar 

  • Chen X, Burda C (2004) Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J Phys Chem B 108:15446–15449. doi:10.1021/jp0469160

    Article  Google Scholar 

  • Chen C, Bai H, Chang SM, Chang C, Den W (2007a) Preparation of N-doped TiO2 photocatalyst by atmospheric pressure plasma process for VOCs decomposition under UV and visible light sources. J Nanopart Res 9:365–375. doi:10.1007/s11051-006-9141-2

    Article  Google Scholar 

  • Chen XB, Mao SS, Chen X, Mao SS (2007b) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 38:2891–2959. doi:10.1021/cr0500535

    Article  Google Scholar 

  • Chen H, Wang Y, Dong S (2007c) An effective hydrothermal route for the synthesis of multiple PDDA-protected noble-metal nanostructures. Inorg Chem 46:10587–10593. doi:10.1021/ic7009572

    Article  Google Scholar 

  • Gu L, Wang J, Cheng H, Zhao Y, Liu L, Han X (2013) One-step preparation of graphene-supported anatase TiO2 with exposed 001 facets and mechanism of enhanced photocatalytic properties. ACS Appl Mater Interfaces 5:3085–3093. doi:10.1021/am303274t

    Article  Google Scholar 

  • Guo J, Zhu S, Chen Z, Li Y, Yu Z, Liu Q, Zhang D (2011) Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst. Ultrason Sonochem 18:1082–1090. doi:10.1016/j.ultsonch.2011.03.021

    Article  Google Scholar 

  • Han K, Shen JM, Hao SQ, Ye HQ, Wolverton C, Kung MC, Kung HH (2014) Free-standing nitrogen-doped graphene paper as electrodes for high-performance lithium/dissolved polysulfide batteries. ChemSusChem 7:2545–2553. doi:10.1002/cssc.201402329

    Article  Google Scholar 

  • Jang HD, Kim SK, Kim SJ (2001) Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J Nanopart Res 3:141–147. doi:10.1023/A:1017948330363

    Article  Google Scholar 

  • Jiang G, Lin Z, Chen C, Zhu L, Chang Q, Wang N, Wei W, Tang H (2011) TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49:2693–2701. doi:10.1016/j.carbon.2011.02.059

    Article  Google Scholar 

  • Lee JS, You KH, Park CB (2012) Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv Mater 24:1084–1088. doi:10.1002/adma.201104110

    Article  Google Scholar 

  • Li L, Zhu W, Zhang P, Chen Z, Han W (2003) Photocatalytic oxidation and ozonation of catechol over carbon-black-modified nano-TiO2 thin films supported on Al sheet. Water Res 37:3646–3651. doi:10.1016/S0043-1354(03)00269-0

    Article  Google Scholar 

  • Li JG, Ishigaki T, Sun X (2007) Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: phase-selective synthesis and physicochemical properties. J Phys Chem C 111:4969–4976. doi:10.1021/jp0673258

    Article  Google Scholar 

  • Liang Y, Wang H, Casalongue HS, Chen Z, Dai H (2010) TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res 3:701–705. doi:10.1007/s12274-010-0033-5

    Article  Google Scholar 

  • Liu J, Bai H, Wang Y, Liu Z, Zhang X, Sun DD (2010) Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv Funct Mater 20:4175–4181. doi:10.1002/adfm.201001391

    Article  Google Scholar 

  • Liu G, Gui S, Zhou H, Zeng F, Zhou Y, Ye H (2014) A strong adsorbent for Cu2+: graphene oxide modified with triethanolamine. Dalton Trans 43:6977–6980. doi:10.1039/C4DT00063C

    Article  Google Scholar 

  • Low W, Boonamnuayvitaya V (2013) A study of photocatalytic graphene-TiO2 synthesis via peroxo titanic acid refluxed sol. Mater Res Bull 48:2809–2816. doi:10.1016/j.materresbull.2013.04.020

    Article  Google Scholar 

  • Ma JQ, Guo SB, Guo XH, Ge HG (2015) Liquid-phase deposition of TiO2 nanoparticles on core-shell Fe3O4@SiO2 spheres: preparation, characterization, and photocatalytic activity. J Nanopart Res 17:1–11. doi:10.1007/s11051-015-3107-1

    Article  Google Scholar 

  • Manga KK, Wang S, Jaiswal M, Bao Q, Loh KP (2010) Graphene electronics: high-gain graphene-titanium oxide photoconductor made from inkjet printable ionic solution. Adv Mater 22:5265–5270. doi:10.1002/adma.201090154

    Article  Google Scholar 

  • Morales-Torres S, Pastrana-Martínez LM, Figueiredo JL, Faria JL, Silva AM (2012) Design of graphene-based TiO2 photocatalysts—a review. Environ Sci Pollut Res 19:3676–3687. doi:10.1007/s11356-012-0939-4

    Article  Google Scholar 

  • Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite-and graphene oxide. Carbon 49:3019–3023. doi:10.1016/j.carbon.2011.02.071

    Article  Google Scholar 

  • Qiu B, Xing M, Zhang J (2014) Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J Am Chem Soc 136:5852–5855. doi:10.1021/ja500873u

    Article  Google Scholar 

  • Tan LL, Chai SP, Mohamed AR (2012) Synthesis and applications of graphene-based TiO2 photocatalysts. ChemSusChem 5:1868–1882. doi:10.1002/cssc.201200480

    Article  Google Scholar 

  • Wang W, Liu H, Wu T, Zhang P, Ding G, Liang S, Han B (2012) Ru catalyst supported on bentonite for partial hydrogenation of benzene to cyclohexene. J Mol Catal A 355:174–179. doi:10.1016/j.molcata.2011.12.013

    Article  Google Scholar 

  • Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796. doi:10.1039/C1CS15172J

    Article  Google Scholar 

  • Yang HG, Liu G, Qiao SZ, Sun CH, Jin YG, Smith SC, Lu GQ (2009) Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant 001 facets. J Am Chem Soc 131:4078–4083. doi:10.1021/ja808790p

    Article  Google Scholar 

  • Yu X, Manthiram A (2015) MnNiCoO4/N-MWCNT nanocomposite catalyst with high selectivity in membraneless direct formate fuel cells and bifunctional activity for oxygen electrochemistry. Catal Sci Technol 5:2072–2075. doi:10.1039/C4CY01702A

    Article  Google Scholar 

  • Yu CL, Wu RX, Fu YH, Dong XL, Ma HC (2012) Preparation of polyaniline supported TiO2 photocatalyst and its photocatalytic property. Adv Mater Res 356:524–528. doi:10.4028/www.scientific.net/AMR.356-360.524

    Google Scholar 

  • Yuan L, Yu Q, Zhang Y, Xu YJ (2014) Graphene-TiO2 nanocomposite photocatalysts for selective organic synthesis in water under simulated solar light irradiation. RSC Adv 4:15264–15270. doi:10.1039/C4RA01190B

    Article  Google Scholar 

  • Zhang Y, Pan C (2011) TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J Mater Sci 46:2622–2626. doi:10.1007/s10853-010-5116-x

    Article  Google Scholar 

  • Zhang H, Xu P, Du G, Chen Z, Oh K, Pan D, Jiao Z (2011) A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange. Nano Res 4:274–283. doi:10.1007/s12274-010-0079-4

    Article  Google Scholar 

  • Zhou K, Zhu Y, Yang X, Jiang X, Li C (2011) Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New J Chem 35:353–359. doi:10.1039/C0NJ00623H

    Article  Google Scholar 

  • Zhou Y, Liu J, Li X, Pan X, Bao X (2012) Selectivity modulation in the consecutive hydrogenation of benzaldehyde via functionalization of carbon nanotubes. J Nat Gas Chem 21:241–245. doi:10.1016/S1003-9953(11)60359-9

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NO. 21376271 and 21276284), the Natural Science Foundation of Hunan Province (NO. 2015JJ2174), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 563 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Wang, R., Liu, H. et al. Highly dispersive nano-TiO2 in situ growing on functional graphene with high photocatalytic activity. J Nanopart Res 18, 21 (2016). https://doi.org/10.1007/s11051-016-3330-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3330-4

Keywords

Navigation