Skip to main content
Log in

Synthesis of highly dispersed and versatile anatase TiO2 nanocrystals on graphene sheets with enhanced photocatalytic performance for dye degradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A highly dispersed and versatile anatase TiO2 nanocrystal on graphene sheets (TiO2–G) was synthesized by a simple solvent thermal method. The structural and optical properties of the as-synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–Vis absorption spectroscopy and Raman spectra. The results show that the anatase TiO2 nanocrystals with approximately 20–30 nm size are well distributed on the graphene sheets, and the introduction of graphene increases the light absorption intensity in visible light region. Noticeably, the TiO2–G exhibits excellent photocatalytic activity and reusability, and can be applied to the degradation of various organic dyes, such as methyl orange (MO), methyl blue (MB) and rhodamine-B (RhB). This unique TiO2–G composite photocatalyst proved to have great potentials for organic contaminants degradation in wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Khojasteh, M. Salavati-Niasari, M.-P. Mazhari, M. Hamadanian, RSC Adv. 6, 78043–78052 (2016)

    CAS  Google Scholar 

  2. S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, J. Mater. Sci. 28, 4345–4350 (2016)

    Google Scholar 

  3. A. Sobhani-Nasab, Z. Zahraei, M. Akbari, M. Maddahfar, S.M. Hosseinpour-Mashkani, J. Mol. Struct. 1139, 430–435 (2017)

    CAS  Google Scholar 

  4. A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, J. Rare Earths 35, 374–381 (2017)

    CAS  Google Scholar 

  5. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, S. Afr. J. Chem. 70, 44–48 (2017)

    CAS  Google Scholar 

  6. M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, A. YeganehFaal, S. Bagheri, Adv. Powder Technol. 27, 2066–2075 (2016)

    CAS  Google Scholar 

  7. P.K. Dubey, P. Tripathi, R.S. Tiwari, A.S.K. Sinha, O.N. Srivastava, Int. J. Hydr. Energy 39, 16282–16292 (2014)

    CAS  Google Scholar 

  8. F. Mazloom, M. Masjedi-Arani, M. Salavati-Niasari, J. Mol. Liq. 220, 566–572 (2016)

    CAS  Google Scholar 

  9. F. Mazloom, M. Masjedi-Arani, M. Ghiyasiyan-Arani, M. Salavati-Niasari, J. Mol. Liq. 214, 46–53 (2016)

    CAS  Google Scholar 

  10. M. Ghiyasiyan-Arani, M. Masjedi-Arani, M. Salavati-Niasari, J. Mol. Liq. 216, 59–66 (2016)

    CAS  Google Scholar 

  11. T. Gholami, M. Bazarganipour, M. Salavati-Niasari, N. Mir, M. Hamadanian, S. Bagheri, J. Mol. Liq. 215, 467–471 (2016)

    CAS  Google Scholar 

  12. Y. Yang, G. Wang, Q. Deng, S. Kang, D.H.L. Ng, H. Zhao, Cryst. Eng. Comm. 16, 3091 (2014)

    CAS  Google Scholar 

  13. R. Daghrir, P. Drogui, D. Robert, Ind. Eng. Chem. Res. 52, 3581–3599 (2013)

    CAS  Google Scholar 

  14. Y. Wang, Y. Cao, Y. Li, D. Jia, J. Xie, Ceram. Int 40, 11735–11742 (2014)

    CAS  Google Scholar 

  15. L. Luo, Y. Yang, A. Zhang, M. Wang, Y. Liu, L. Bian, F. Jiang, X. Pan, Appl. Surf. Sci. 353, 469–479 (2015)

    CAS  Google Scholar 

  16. M. Zhang, L. Li, X. Zhang, RSC Adv. 5, 29693–29697 (2015)

    Google Scholar 

  17. P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, Y. Sun, Y. Liu, J. Mater. Chem. 21, 17746–17753 (2011)

    CAS  Google Scholar 

  18. H.M. Yadav, J.S. Kim, J. Alloys Compd. 688, 123–129 (2016)

    CAS  Google Scholar 

  19. J. Mungkalasiri, L. Bedel, F. Emieux, A.V.-D. Cara, J. Freney, F. Maury, F.N.R. Renaud, Surf. Coat. Technol. 242, 187–194 (2014)

    CAS  Google Scholar 

  20. L. Kuang, W. Zhang, RSC Adv. 6, 2479–2488 (2016)

    CAS  Google Scholar 

  21. X. Yang, J. Qin, Y. Jiang, R. Li, Y. Li, H. Tang, RSC Adv. 4, 18627 (2014)

    CAS  Google Scholar 

  22. L. Hu, Y. Zhang, S. Zhang, B. Li, RSC Adv. 6, 43098–43103 (2016)

    CAS  Google Scholar 

  23. B. Bukowski, N.A. Deskins, Phys. Chem. Chem. Phys. 17, 29734–29746 (2015)

    CAS  Google Scholar 

  24. R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Ind. Eng. Chem. Res. 46, 369–376 (2007)

    CAS  Google Scholar 

  25. W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, J. Cui, ACS Appl. Mater. Interfaces 2, 2385–2392 (2010)

    CAS  Google Scholar 

  26. F. Wu, W. Liu, J. Qiu, J. Li, W. Zhou, Y. Fang, S. Zhang, X. Li, Appl. Surf. Sci. 358, 425–435 (2015)

    CAS  Google Scholar 

  27. C. Zhang, L. Wu, D. Cai, C. Zhang, N. Wang, J. Zhang, Z. Wu, ACS Appl. Mater. Interfaces 5, 4783–4790 (2013)

    CAS  Google Scholar 

  28. K.S. Subrahmanyam, A. Ghosh, A. Gomathi, A. Govindaraj, C.N.R. Rao, Nanosci. Nanotechnol. Lett. 1, 28–31 (2009)

    CAS  Google Scholar 

  29. C.D. Zangmeister, Chem. Mater. 22, 5625–5629 (2010)

    CAS  Google Scholar 

  30. S. Pei, H.-M. Cheng, Carbon 50, 3210–3228 (2012)

    CAS  Google Scholar 

  31. N. Zhang, Y. Zhang, Y.-J. Xu, Nanoscale 4, 5792–5813 (2012)

    CAS  Google Scholar 

  32. L. Liu, J. Liu, D.D. Sun, Catal. Sci. Technol. 2, 2525 (2012)

    CAS  Google Scholar 

  33. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Balkus, ACS Catal. 2, 949–956 (2012)

    CAS  Google Scholar 

  34. J. Zhang, Z. Zhu, Y. Tang, X. Feng, J. Mater. Chem. A 1, 3752 (2013)

    CAS  Google Scholar 

  35. W. Geng, H. Liu, X. Yao, Phys. Chem. Chem. Phys. 15, 6025–6033 (2013)

    CAS  Google Scholar 

  36. M. Ghiyasiyan-Arani, M. Masjedi-Arani, M. salavati-Niasari, J. Mol. Catal. A 425, 31–42 (2016)

    CAS  Google Scholar 

  37. M. Meksi, G. Berhault, C. Guillard, H. Kochkar, Catal. Commun. 61, 107–111 (2015)

    CAS  Google Scholar 

  38. S. Liu, C. Liu, W. Wang, B. Cheng, J. Yu, Nanoscale 4, 3193–3200 (2012)

    CAS  Google Scholar 

  39. Y. Li, J. Yan, Q. Su, E. Xie, W. Lan, Mater. Sci. Semicond. Process 27, 695–701 (2014)

    CAS  Google Scholar 

  40. Y. Zhang, Z. Zhou, T. Chen, H. Wang, W. Lu, J. Environ. Sci. 26, 2114–2122 (2014)

    Google Scholar 

  41. Q. Xiang, J. Yu, M. Jaroniec, Nanoscale 3, 3670–3678 (2011)

    CAS  Google Scholar 

  42. J.S. Lee, K.H. You, C.B. Park, Adv. Mater. 24, 1084–1088 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Nature Science Foundation of China (51601167) Science, Science and Technology Program of Shaanxi Province (2015SF262,2016SF334), Technology Program of Yulin (Gy13-10), Project of Education Department of Shaanxi Province (2013JK0751) and Special Research Program of Yulin University (14YK22) for financial support this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Ma, X., Dang, R. et al. Synthesis of highly dispersed and versatile anatase TiO2 nanocrystals on graphene sheets with enhanced photocatalytic performance for dye degradation. J Mater Sci: Mater Electron 28, 18883–18890 (2017). https://doi.org/10.1007/s10854-017-7841-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7841-2

Navigation