Skip to main content
Log in

Carbon nanotube field emitters on KOVAR substrate modified by random pattern

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We investigated the field emission characteristics of patterned carbon nanotubes (CNTs) on KOVAR substrates with different surface morphologies. The substrate with a micro-sized random pattern was fabricated through chemical wet etching, whereas the substrate with a nano-sized random pattern was formed by surface roughening process of polymer and chemical wet etching. The field emission characteristics of these substrates were the compared with those of non-treated substrates. It was clearly revealed that the field emission characteristics of CNTs were influenced by the surface morphology of the cathode substrate. When the surface of cathode was modified by random pattern, the modified substrate provided a large surface area and a wider print area. Also, the modified surface morphology of the cathode provided strong adhesion between the CNT paste and the cathode. Particularly, the substrate with the nano-sized random pattern showed that the turn-on field value decreases and the field enhancement factor value improves as compared with non-treated substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792. doi:10.1126/science.1060928

    Article  Google Scholar 

  • Chen J et al (2014a) Enhanced field emission properties from aligned graphenes fabricated on micro-hole patterned stainless steel. Appl Phys Lett 105:1

    Google Scholar 

  • Chen L et al (2014b) Electron field emission characteristics of graphene/carbon nanotubes hybrid field emitter. J Alloys Compd 610:659–664. doi:10.1016/j.jallcom.2014.04.202

    Article  Google Scholar 

  • Cheng Y, Zhou O (2003) Electron field emission from carbon nanotubes. C R Phys 4:1021–1033. doi:10.1016/S1631-0705(03)00103-8

    Article  Google Scholar 

  • Choi WB et al (1999) Fully sealed, high-brightness carbon-nanotube field-emission display. Appl Phys Lett 75:3129–3131

    Article  Google Scholar 

  • Choi YC et al (2008) The high contrast ratio and fast response time of a liquid crystal display lit by a carbon nanotube field emission backlight unit. Nanotechnology 19:235306. doi:10.1088/0957-4484/19/23/235306

    Article  Google Scholar 

  • De Heer WA, Châtelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270:1179–1180

    Article  Google Scholar 

  • De Jonge N, Bonard JM (2004) Carbon nanotube electron sources and applications. Philos Trans R Soc Lond A 362:2239–2266

    Article  Google Scholar 

  • Feng Y, Verboncoeur JP (2005) A model for effective field enhancement for Fowler-Nordheim field emission. Phys Plasmas 12:1–6. doi:10.1063/1.2103567

    Google Scholar 

  • Fürstner R, Barthlott W, Neinhuis C, Walzel P (2005) Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21:956–961. doi:10.1021/la0401011

    Article  Google Scholar 

  • Ghosh K, Kumar M, Maruyama T, Ando Y (2010) Controllable growth of highly N-doped carbon nanotubes from imidazole: a structural, spectroscopic and field emission study. J Mater Chem 20:4128–4134. doi:10.1039/b923139k

    Article  Google Scholar 

  • Hu L, Hecht DS, Grüner G (2010) Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev 110:5790–5844. doi:10.1021/cr9002962

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  • Jeong JW, Kang JT, Choi S, Kim JW, Ahn S, Song YH (2013) A digital miniature X-ray tube with a high-density triode carbon nanotube field emitter. Appl Phys Lett 102:023504. doi:10.1063/1.4776222

    Article  Google Scholar 

  • Kyung SJ et al (2007) The effect of Ar neutral beam treatment of screen-printed carbon nanotubes for enhanced field emission. J Appl Phys 101:083305. doi:10.1063/1.2714648

    Article  Google Scholar 

  • Lee HJ et al (2006) Enhanced surface morphologies of screen-printed carbon nanotube films by heat treatment and their field-emission properties. Carbon 44:2625–2630. doi:10.1016/j.carbon.2006.04.038

    Article  Google Scholar 

  • Lee K et al (2012) The effect of surface treatments on the field emission characteristics of patterned carbon nanotubes on KOVAR substrate. J Nanopart Res 14:1–9. doi:10.1007/s11051-012-0890-9

    Google Scholar 

  • Meyyappan M, Delzeit L, Cassell A, Hash D (2003) Carbon nanotube growth by PECVD: a review. Plasma Sources Sci Technol 12:205–216. doi:10.1088/0963-0252/12/2/312

    Article  Google Scholar 

  • Miwa M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T (2000) Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16:5754–5760. doi:10.1021/la991660o

    Article  Google Scholar 

  • Nam JW et al (2005) The influence of filler on the emission properties and rheology of carbon nanotube paste. Diam Relat Mater 14:2089–2093

    Article  Google Scholar 

  • Nessim GD (2010) Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale 2:1306–1323

    Article  Google Scholar 

  • Oruganti N, Goedert M, Lee SJJ (2013) Process variability in surface roughening of SU-8 by oxygen plasma. Microsyst Technol 19:971–978. doi:10.1007/s00542-012-1680-0

    Article  Google Scholar 

  • Patankar NA (2003) On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19:1249–1253. doi:10.1021/la026612+

    Article  Google Scholar 

  • Smith RC, Silva SRP (2009) Interpretation of the field enhancement factor for electron emission from carbon nanotubes. J Appl Phys 106:014314. doi:10.1063/1.3149803

    Article  Google Scholar 

  • Sridhar S et al (2014) Enhanced field emission properties from cnt arrays synthesized on inconel superalloy. ACS Appl Mater Interfaces 6:1986–1991. doi:10.1021/am405026y

    Article  Google Scholar 

  • Srivastava SK, Vankar VD, Rao DVS, Kumar V (2006) Enhanced field emission characteristics of nitrogen-doped carbon nanotube films grown by microwave plasma enhanced chemical vapor deposition process. Thin Solid Films 515:1851–1856. doi:10.1016/j.tsf.2006.07.016

    Article  Google Scholar 

  • Ting YH et al (2010) Surface roughening of polystyrene and poly(methyl methacrylate) in Ar/O2 plasma etching. Polymers 2:649–663

    Article  Google Scholar 

  • Vink TJ, Gillies M, Kriege JC, Van de Laar HWJJ (2003) Enhanced field emission from printed carbon nanotubes by mechanical surface modification. Appl Phys Lett 83:3552–3554. doi:10.1063/1.1622789

    Article  Google Scholar 

  • Yun Y et al (2007) Nanotube electrodes and biosensors. Nano Today 2:30–37. doi:10.1016/S1748-0132(07)70171-8

    Article  Google Scholar 

  • Zou R et al (2010) Carbon nanotubes as field emitter. J Nanosci Nanotechnol 10:7876–7896. doi:10.1166/jnn.2010.3035

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Industrial Core Technology Development Program funded by the Ministry of Trade, industry, and Energy (No. 10037379, Development of Multi X-ray Source and Tomosynthesis System based on Nano Materials). The authors thank the staff of KBSI for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong-Kwon Ju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.A., Song, EH., Kang, B.H. et al. Carbon nanotube field emitters on KOVAR substrate modified by random pattern. J Nanopart Res 17, 318 (2015). https://doi.org/10.1007/s11051-015-3120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3120-4

Keywords

Navigation