Skip to main content
Log in

Improving field emission properties of vertically aligned carbon nanotube arrays through a structure modification

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Vertically aligned carbon nanotube (VACNT) emitters were synthesized directly on stainless steel substrate using DC plasma-enhanced chemical vapor deposition. Remarkable field emission (FE) properties, such as low turn-on electric field (ETO = 1.40 V/μm) and low threshold electric field (ETH = 2.31 V/μm), were observed from VACNT arrays with long length and moderate density. The FE performance was significantly enhanced by a uniquely bundled structure of VACNTs formed through a simple water treatment process. The FE properties of VACNTs were further improved by coating the exterior of CNTs with a uniform layer of crystalline SnO2 nanoparticles; the ETO and ETH were reduced to 1.18 and 2.01 V/μm, respectively. The enhancement of FE properties by SnO2 coating can be attributed to the morphological change of VACNTs caused by the solution phase coating process. The coated samples also exhibited an improved FE stability which is attributed to the enhancement of the mechanical strength and chemical stability of the VACNTs after the SnO2 coating. The VACNT emitters with characteristic features such as a conductive substrate, low contact resistance between the VACNTs and the substrate, uniform coating, and bundled morphology can be ideal candidates for FE devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS (2002) Mechanics of carbon nanotubes. Appl Mech Rev 55(6):495–533

    Google Scholar 

  2. Hone J, Llaguno MC, Biercuk MJ, Johnson AT, Batlogg B, Benes Z et al (2002) Thermal properties of carbon nanotubes and nanotube-based materials. Appl Phys A Mater Sci Process 74(3):339–343

    CAS  Google Scholar 

  3. Bockrath M, Cobden DH, McEuen PL, Chopra NG, Zettl A, Thess A et al (1997) Single-electron transport in ropes of carbon nanotubes. Science 275(5308):1922–1925

    CAS  Google Scholar 

  4. Poudel YR, Li W (2018) Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: a review. Mater Today Phys 7:7–34

    Google Scholar 

  5. Choi WB, Chung DS, Kang JH, Kim HY, Jin YW, Han IT et al (1999) Fully sealed, high-brightness carbon-nanotube field-emission display. Appl Phys Lett 75(20):3129–3131

    CAS  Google Scholar 

  6. Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297(5582):787–792

    CAS  Google Scholar 

  7. Yue GZ, Qiu Q, Gao B, Cheng Y, Zhang J, Shimoda H et al (2002) Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode. Appl Phys Lett 81(2):355–357

    CAS  Google Scholar 

  8. Milne WI, Teo KBK, Minoux E, Groening O, Gangloff L, Hudanski L et al (2006) Aligned carbon nanotubes/fibers for applications in vacuum microwave amplifiers. J Vacuum Sci Technol B Microelectron Nanometer Struct 24(1):345–348

    CAS  Google Scholar 

  9. Li J, Papadopoulos C, Xu J (1999) Growing Y-junction carbon nanotubes. Nature 402:253–254

    CAS  Google Scholar 

  10. Morassutto M, Tiggelaar RM, Smithers M, Gardeniers JG (2016) Vertically aligned carbon nanotube field emitter arrays with Ohmic base contact to silicon by Fe-catalyzed chemical vapor deposition. Mater Today Commun 7:89–100

    CAS  Google Scholar 

  11. Talapatra S, Kar S, Pal SK, Vajtai R, Ci L, Victor P et al (2006) Direct growth of aligned carbon nanotubes on bulk metals. Nat Nanotechnol 1(2):112–116

    CAS  Google Scholar 

  12. Neupane S, Yang Y, Li W, Gao Y (2014) Synthesis and enhanced electron field emission of vertically aligned carbon nanotubes grown on stainless steel substrate. J Nanosci Lett 4:14–20

    Google Scholar 

  13. Bonard JM, Weiss N, Kind H, Stöckli T, Forró L, Kern K, Chatelain A (2001) Tuning the field emission properties of patterned carbon nanotube films. Adv Mater 13(3):184–188

    CAS  Google Scholar 

  14. Kim D, Lim SH, Guilley AJ, Cojocaru CS, Bourée JE, Vila L et al (2008) Growth of vertically aligned arrays of carbon nanotubes for high field emission. Thin Solid Films 516(5):706–709

    CAS  Google Scholar 

  15. Hazra KS, Rai P, Mohapatra DR, Kulshrestha N, Bajpai R, Roy S et al (2009) Dramatic enhancement of the emission current density from carbon nanotube based nanosize tips with extremely low onset fields. ACS Nano 3(9):2617–2622

    CAS  Google Scholar 

  16. Gupta BK, Kedawat G, Gangwar AK, Nagpal K, Kashyap PK, Srivastava S et al (2018) High-performance field emission device utilizing vertically aligned carbon nanotubes-based pillar architectures. AIP Adv 8(1):015117

    Google Scholar 

  17. Wang K-Y, Liao C-Y, Cheng H-C (2016) Field-emission characteristics of the densified carbon nanotube pillars array. ECS J Solid State Sci Technol 5(9):M99–M103

    CAS  Google Scholar 

  18. Li Z, Yang X, He F, Bai B, Zhou H, Li C et al (2015) High current field emission from individual non-linear resistor ballasted carbon nanotube cluster array. Carbon 89:1–7

    CAS  Google Scholar 

  19. Li X, Niu J, Zhang J, Li H, Liu Z (2003) Labeling the defects of single-walled carbon nanotubes using titanium dioxide nanoparticles. J Phys Chem B 107:2453–2458

    CAS  Google Scholar 

  20. Green JM, Dong L, Gutu T, Jiao J, Conley JF, Ono Y (2006) ZnO-nanoparticle-coated carbon nanotubes demonstrating enhanced electron field-emission properties. J Appl Phys 99(9):1–4

    Google Scholar 

  21. Chen C-A, Lee K-Y, Chen Y-M, Chi J-G, Lin S-S, Huang Y-S (2010) Field emission properties of RuO2 thin film coated on carbon nanotubes. Vacuum 84(12):1427–1429

    CAS  Google Scholar 

  22. Chakrabarti S, Pan L, Tanaka H, Hokushin S, Nakayama Y (2007) Stable field emission property of patterned MgO coated carbon nanotube arrays. Jpn J Appl Phys 46(7R):4364–4369

    CAS  Google Scholar 

  23. Sreekanth M, Ghosh S, Barman SR, Sadhukhan P, Srivastava P (2018) Field emission properties of indium-decorated vertically aligned carbon nanotubes: an interplay between type of hybridization, density of states and metal thickness. Appl Phys A 124(8):528–536

    Google Scholar 

  24. Sridhar S, Tiwary C, Vinod S, Taha-Tijerina JJ, Sridhar S, Kalaga K et al (2014) Field emission with ultralow turn on voltage from metal decorated carbon nanotubes. ACS Nano 8(8):7763–7770

    CAS  Google Scholar 

  25. Suriani A, Dalila A, Mohamed A, Mamat M, Malek M, Soga T et al (2016) Fabrication of vertically aligned carbon nanotubes–zinc oxide nanocomposites and their field electron emission enhancement. Mater Des 90:185–195

    CAS  Google Scholar 

  26. Thapa A, Neupane S, Guo R, Jungjohann KL, Pete D, Li W (2018) Direct growth of vertically aligned carbon nanotubes on stainless steel by plasma enhanced chemical vapor deposition. Diam Relat Mater 90:144–153

    CAS  Google Scholar 

  27. Han W-Q, Zettl A (2003) Coating single-walled carbon nanotubes with tin oxide. Nano Lett 3(5):681–683

    CAS  Google Scholar 

  28. Masarapu C, Wei B (2007) Direct growth of aligned multiwalled carbon nanotubes on treated stainless steel substrates 23(17):9046–9049

    CAS  Google Scholar 

  29. Bower C, Zhou O, Zhu W, Werder DJ, Jin S (2000) Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl Phys Lett 77(17):2767–2769

    CAS  Google Scholar 

  30. Chhowalla M, Teo KBK, Ducati C, Rupesinghe NL, Amaratunga GAJ, Ferrari AC et al (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 90(10):5308–5317

    CAS  Google Scholar 

  31. Abadi PPSS, Maschmann MR, Hodson SL, Fisher TS, Baur JW, Graham S et al (2017) Mechanical behavior of carbon nanotube forests grown with plasma enhanced chemical vapor deposition: pristine and conformally coated. J Eng Mater Technol 139(3):034502

    Google Scholar 

  32. Arjmand M, Chizari K, Krause B, Pötschke P, Sundararaj U (2016) Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites. Carbon 98:358–372

    CAS  Google Scholar 

  33. Jang JW, Lee CE, Lyu SC, Lee TJ, Lee CJ (2004) Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Appl Phys Lett 84(15):2877–2879

    CAS  Google Scholar 

  34. Lau KK, Bico J, Teo KB, Chhowalla M, Amaratunga GA, Milne WI et al (2003) Superhydrophobic carbon nanotube forests. Nano Lett 3(12):1701–1705

    CAS  Google Scholar 

  35. Mashayekhi A, Hosseini SM, Amiri MH, Namdar N, Sanaee Z (2016) Plasma-assisted nitrogen doping of VACNTs for efficiently enhancing the supercapacitor performance. J Nanopart Res 18(6):154–168

    Google Scholar 

  36. Pandey A, Prasad A, Moscatello J, Ulmen B, Yap YK (2010) Enhanced field emission stability and density produced by conical bundles of catalyst-free carbon nanotubes. Carbon 48(1):287–292

    CAS  Google Scholar 

  37. Zhang K, Li T, Ling L, Lu H, Tang L, Li C et al (2017) Facile synthesis of high density carbon nanotube array by a deposition-growth-densification process. Carbon 114:435–440

    CAS  Google Scholar 

  38. Rudloff-Grund J, Brenker F, Marquardt K, Kaminsky F, Schreiber A (2016) STEM EDX nitrogen mapping of nanoinclusions in milky diamonds from Juina, Brazil, using a windowless silicon drift detector system. Anal Chem 88(11):5804–5808

    CAS  Google Scholar 

  39. Barros E, Souza Filho A, Lemos V, Mendes Filho J, Fagan SB, Herbst M et al (2005) Charge transfer effects in acid treated single-wall carbon nanotubes. Carbon 43(12):2495–2500

    CAS  Google Scholar 

  40. Wang Z, Chen G, Xia D (2008) Coating of multi-walled carbon nanotube with SnO2 films of controlled thickness and its application for Li-ion battery. J Power Sources 184(2):432–436

    CAS  Google Scholar 

  41. Fan W, Gao L, Sun J (2006) Tin oxide nanoparticle-functionalized multi-walled carbon nanotubes by the vapor phase method. J Am Ceram Soc 89(8):2671–2673

    CAS  Google Scholar 

  42. Jonge N, Allioux M, Doytcheva M, Kaiser M, Teo KBK, Lacerda RG et al (2004) Characterization of the field emission properties of individual thin carbon nanotubes. Appl Phys Lett 85(9):1607–1609

    Google Scholar 

  43. Doytcheva M, Kaiser M, Verheijen MA, Reyes-Reyes M, Terrones M, de Jonge N (2004) Electron emission from individual nitrogen-doped multi-walled carbon nanotubes. Chem Phys Lett 396(1–3):126–130

    CAS  Google Scholar 

  44. Brodie I, Spindt C (1992) Vacuum microelectronics. In: Hawkes PW (ed) Advances in electronics and electron physics. Elsevier, Amsterdam, pp 1–106

    Google Scholar 

  45. Gao R, Pan Z, Wang ZL (2001) Work function at the tips of multiwalled carbon nanotubes. Appl Phys Lett 78(12):1757–1759

    CAS  Google Scholar 

  46. Kurilich MR, Thapa A, Moilanen A, Miller JL, Li W, Neupane S (2019) Comparative study of electron field emission from randomly-oriented and vertically-aligned carbon nanotubes synthesized on stainless steel substrates. J Vacuum Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom 37(4):041202

    Google Scholar 

  47. Pandey A, Prasad A, Moscatello JP, Yap YK (2010) Stable electron field emission from PMMA− CNT matrices. ACS Nano 4(11):6760–6766

    CAS  Google Scholar 

  48. Chhowalla M, Ducati C, Rupesinghe NL, Teo KBK, Amaratunga GAJ (2001) Field emission from short and stubby vertically aligned carbon nanotubes. Appl Phys Lett 79(13):2079–2081

    CAS  Google Scholar 

  49. Patra R, Ghosh S, Sharma H, Vankar VD (2013) High stability field emission from zinc oxide coated multiwalled carbon nanotube film. Adv Mater Lett 4(11):849–855

    Google Scholar 

  50. Xu J, Xu P, Ou-Yang W, Chen X, Guo P, Li J et al (2015) Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices. Appl Phys Lett 106(7):073501

    Google Scholar 

  51. Crespi VH, Chopra NG, Cohen ML, Zettl A, Louie SG (1996) Anisotropic electron-beam damage and the collapse of carbon nanotubes. Phys Rev B 54(8):5927–5931

    CAS  Google Scholar 

  52. Zhang K, Stocks GM, Zhong J (2007) Melting and premelting of carbon nanotubes. Nanotechnology 18(28):285703

    Google Scholar 

  53. Doytcheva M, Kaiser M, Jonge N (2006) In situ transmission electron microscopy investigation of the structural changes in carbon nanotubes during electron emission at high currents. Nanotechnology 17(13):3226–3233

    CAS  Google Scholar 

  54. Bocharov G, Eletskii A (2013) Theory of carbon nanotube (CNT)-based electron field emitters. Nanomaterials 3(3):393–442

    CAS  Google Scholar 

  55. Chen G, Neupane S, Li W, Chen L, Zhang J (2013) An increase in the field emission from vertically aligned multiwalled carbon nanotubes caused by NH3 plasma treatment. Carbon 52:468–475

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation under grant DMR-1506640. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the US DOE’s National Nuclear Security Administration under contract DE-NA-0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the US Department of Energy or the US Government. The authors would also like to acknowledge the support from Advanced Materials Engineering Research Institutes (AMERI) at Florida International University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhi Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapa, A., Jungjohann, K.L., Wang, X. et al. Improving field emission properties of vertically aligned carbon nanotube arrays through a structure modification. J Mater Sci 55, 2101–2117 (2020). https://doi.org/10.1007/s10853-019-04156-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04156-6

Navigation