Skip to main content
Log in

A Facile Approach of Fabricating Various ZnO Microstructures via Electrochemical Deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A facile electrochemical route was proposed for the shape-selective synthesis of ZnO structures on conductive substrates. Our strategy for designing ZnO structures was based on a double-electrodes electrochemical deposition approach, in which the well-oriented ZnO structures with variable morphology on different conductive substrates could be adjusted by monitoring electrochemical parameters (e.g., zinc chloride concentration, deposition potential, and deposition temperature). The variation in deposition parameters led to the ZnO formation of different structures, such as ZnO flowers, sheets and aggregates. In addition, the analysis of I-V characteristics illustrated that the ZnO flowers were composed of sheets clustered on the graphite substrate and exhibited higher dark current than other structures. Furthermore, the remarkable Schottky contact behaviour was found for ZnO flowers deposited on carbon paper and copper foil substrates. This work demonstrates a simple method for tuning the growth of desired ZnO structures and exploring its application in functional optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data

The data sets supporting the results of this article are included within the article and its additional files.

References

  1. M. Chen, L.F. Hu, J.X. Xu, M.Y. Liao, L.M. Wu, and X.S. Fang, Small 7, 2449 (2011).

    Google Scholar 

  2. X.S. Fang, Y. Bando, U.K. Gautam, C.H. Ye, and D. Golberg, J. Mater. Chem. 18, 509 (2008).

    Article  Google Scholar 

  3. J. Yan, X.S. Fang, L.D. Zhang, Y. Bando, U.K. Gautam, B. Dierre, T. Sekiguchi, and D. Golberg, Nano Lett. 8, 2794 (2008).

    Article  Google Scholar 

  4. Q.C. Liang, F. Qiao, X.J. Cui, and X.Y. Hou, Mat. Sci. Semicon. Proc. 89, 154 (2019).

    Article  Google Scholar 

  5. U.K. Gautam, M. Imura, C.S. Rout, Y. Bando, X.S. Fang, B. Dierre, L. Sakharov, A. Govindaraj, T. Sekiguchi, D. Golberg, and C.N.R. Rao, PNAS 107, 13588 (2010).

    Article  Google Scholar 

  6. Y. Zhang, C. Liu, F. Gong, B. Jiu, and F. Li, Mater. Lett. 186, 7 (2017).

    Article  Google Scholar 

  7. F. Qiao, Q.C. Liang, X.J. Cui, Q. Xu, Y. Xie, and H.Q. Chu, ES. Energ. Environ. https://doi.org/10.30919/esee8c187 (2018).

  8. X. Deng, L. Zhang, J. Guo, Q. Chen, and J. Ma, Mater. Res. Bull. 90, 170 (2017).

    Article  Google Scholar 

  9. M. Tului, A. Bellucci, A. Albolino, and G. Migliozzi, Surf. Coat. Tech. 205, 1070 (2010).

    Article  Google Scholar 

  10. Y. Zhang, L. Wang, X. Liu, Y. Yan, C. Chen, and J. Zhu, J. Phys. Chem. B. 109, 13091 (2005).

    Article  Google Scholar 

  11. C.L. Wu, L. Chang, H.G. Chen, C.W. Lin, Y.C. Chao, and J.K. Yan, Thin Solid Films 498, 137 (2006).

    Article  Google Scholar 

  12. G. Zhong, A. Kalam, A.S. Al-Shihri, Q. Su, J. Li, and G. Du, Mater. Res. Bull. 47, 1467 (2012).

    Article  Google Scholar 

  13. J. Chen, J. Chen, D. Chen, Y. Zhou, W. Li, Y. Ren, and L. Hu, Mater. Lett. 117, 162 (2014).

    Article  Google Scholar 

  14. S. Bai, C. Sun, T. Guo, R. Luo, Y. Lin, A. Chen, L. Sun, and J. Zhang, Electrochim. Acta 90, 530 (2013).

    Article  Google Scholar 

  15. N. Oleynik, M. Adam, A. Krtschil, J. Bläsing, A. Dadgar, F. Bertram, D. Forster, A. Diez, A. Greiling, M. Seip, J. Christen, and A. Krost, J. Cryst. Growth 248, 14 (2003).

    Article  Google Scholar 

  16. C. Ou, P.E. Sanchez-Jimenez, A. Datta, F.L. Boughey, R.A. Whiter, S.L. Sahonta, and S. Kar-Narayan, ACS. Appl. Mater. Inter. 8, 13678 (2016).

    Article  Google Scholar 

  17. Z. Chen, W. Ren, G. Libo, B. Liu, S. Pei, and H. Cheng, Nat. Mater. 10, 424 (2011).

    Article  Google Scholar 

  18. X. Dong, Y. Ma, G. Zhu, Y. Huang, J. Wang, M.B. Chan-Park, L. Wang, W. Huang, and P. Chen, J. Mater. Chem. 22, 17044 (2012).

    Article  Google Scholar 

  19. T. Maiyalagan, X. Dong, P. Chen, and X. Wang, J. Mater. Chem. 22, 5286 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 51406069); China Postdoctoral Science Foundation Special Project (No. 2016T90426); China Postdoctoral Science Foundation (No. 2015M581733); Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1501107B); Training Project of Jiangsu University Youth Backbone Teacher; and National Natural Science Foundation of China (51572002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fen Qiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, F., Liang, Q., Yang, J. et al. A Facile Approach of Fabricating Various ZnO Microstructures via Electrochemical Deposition. J. Electron. Mater. 48, 2338–2342 (2019). https://doi.org/10.1007/s11664-019-06988-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06988-z

Keywords

Navigation