Skip to main content
Log in

The toxic effects of l-Cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Plants play an important role in the fate of nanoparticles in the environment through their uptake, bioaccumulation, and transfer to trophic chains. However, the impacts of nanoparticles on plants as essential components of all ecosystems are not well documented. In the present study, the toxic effects of l-Cysteine-capped CdS nanoparticles on Spirodela polyrrhiza as an aquatic higher plant species were studied. l-Cysteine-capped CdS nanoparticles were synthesized using hydrothermal method and their characteristics were determined by XRD, SEM, HR-TEM, and FT-IR techniques. The diameter of majority of synthesized nanoparticles was about 15–20 nm. Subsequently, the uptake of l-Cysteine-capped CdS nanoparticles by the plant species was confirmed using epifluorescence microscopy. The activity of peroxidase and superoxide dismutase as antioxidant enzymes was assayed and the relative frond number was calculated in the presence of different concentrations of l-Cysteine-capped CdS nanoparticles. The obtained results revealed the toxic effects of the synthesized nanoparticles on S. polyrrhiza, leading to growth reduction and significant changes in antioxidant enzymes’ activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  Google Scholar 

  • Alvarez C, Angeles Bermudez M, Romero LC, Gotor C, Garcia I (2012) Cysteine homeostasis plays an essential role in plant immunity. New Phytol 193:165–177

    Article  Google Scholar 

  • Ball P (2002) Natural strategies for the molecular engineer. Nanotechnology 13:15–28

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  Google Scholar 

  • Brayner R, Dahoumane SA, Nguyen JN-L, Yepremian C, Djediat C, Coute A, Fievet F (2011) Ecotoxicological studies of CdS nanoparticles on photosynthetic microorganisms. J Nanosci Nanotechnol 11:1852–1858

    Article  Google Scholar 

  • Cai Z-X, Yang H, Zhang Y, Yan X-P (2006) Preparation, characterization and evaluation of water-soluble l-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg(II) in aqueous solution. Anal Chim Acta 559:234–239

    Article  Google Scholar 

  • Chance B, Maehly A (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chen J-L, Zhu C-Q (2005) Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Anal Chim Acta 546:147–153

    Article  Google Scholar 

  • Christian P, Von der Kammer F, Baalousha M, Hofmann T (2008) Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17:326–343

    Article  Google Scholar 

  • Dosnon-Olette R, Couderchet M, El Arfaoui A, Sayen S, Eullaffroy P (2010) Influence of initial pesticide concentrations and plant population density on dimethomorph toxicity and removal by two duckweed species. Sci Total Environ 408:2254–2259

    Article  Google Scholar 

  • El-Ansary A, Al-Daihan S (2009) On the toxicity of therapeutically used nanoparticles: an overview. J Toxicol. doi:10.1155/2009/754810

  • Gubbins EJ, Batty LC, Lead JR (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollut 159:1551–1559

    Article  Google Scholar 

  • Havaux M (2003) Spontaneous and thermoinduced photon emission: new methods to detect and quantify oxidative stress in plants. Trends Plant Sci 8:409–413

    Article  Google Scholar 

  • Hossain ST, Mukherjee SK (2013) Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells. J Hazard Mater 260:1073–1082

    Article  Google Scholar 

  • Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732

    Article  Google Scholar 

  • Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    Article  Google Scholar 

  • Jiang R, Zhu H, Li X, Xiao L (2009) Visible light photocatalytic decolourization of CI Acid Red 66 by chitosan capped CdS composite nanoparticles. Chem Eng J 152:537–542

    Article  Google Scholar 

  • Jiang H-S, Li M, Chang F-Y, Li W, Yin L-Y (2012) Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ Toxicol Chem 31:1880–1886

    Article  Google Scholar 

  • Khataee AR, Kasiri MB (2011) Artificial neural network modeling of water and wastewater treatment processes. NOVA Science Publisher, Inc, USA

    Google Scholar 

  • Khataee AR, Aber S, Zarei M, Sheydaei M (2011) Environmental applications of activated carbon and carbon nanotubes. NOVA Science Publisher, Inc, USA

  • Khataee A, Movafeghi A, Torbati S, Salehi Lisar S, Zarei M (2012) Phytoremediation potential of duckweed (Lemna minor L.) in degradation of CI Acid Blue 92: artificial neural network modeling. Ecotoxicol Environ Saf 80:291–298

    Article  Google Scholar 

  • Khataee A, Fathinia M, Joo S (2013) Simultaneous monitoring of photocatalysis of three pharmaceuticals by immobilized TiO2 nanoparticles: chemometric assessment, intermediates identification and ecotoxicological evaluation. Spectrochim Acta Part A 112:33–45

    Article  Google Scholar 

  • Klaine SJ et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  Google Scholar 

  • Koneswaran M, Narayanaswamy R (2009) l-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu 2+ ion. Sens Actuator B Chem 139:104–109

    Article  Google Scholar 

  • Kortan A, Hull R, Opila R, Bawendi M, Steigerwald M, Carroll P, Brus LE (1990) Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media. J Am Chem Soc 112:1327–1332

    Article  Google Scholar 

  • Kovochich M, Xia T, Xu J, Yeh JI, Nel AE (2007) Principles and procedures to assess nanomaterial toxicity environmental nanotechnology: applications and impacts of nanomaterials. McGraw Hill, New York, pp 205–229

    Google Scholar 

  • Li H, Li M, Shih WY, Lelkes PI, Shih W-H (2011) Cytotoxicity tests of water soluble ZnS and CdS quantum dots. J Nanosci Nanotechnol 11:3543–3551

    Article  Google Scholar 

  • Ma-Hock L, Brill S, Wohlleben W, Farias P, Chaves C, Tenorio D, Fontes A, Santos B, Landsiedel R, Strauss V (2012) Short term inhalation toxicity of a liquid aerosol of CdS/Cd (OH)2 core shell quantum dots in male Wistar rats. Toxicol Lett 208:115–124

    Article  Google Scholar 

  • Mishra VK, Tripathi B (2008) Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour Technol 99:7091–7097

    Article  Google Scholar 

  • Mishra P, Shukla VK, Yadav RS, Pandey AC (2013) Toxicity concerns of semiconducting nanostructures on aquatic plant Hydrilla verticillata. J Stress Physiol Biochem 9:287–298

    Google Scholar 

  • Mitsou K, Koulianou A, Lambropoulou D, Pappas P, Albanis T, Lekka M (2006) Growth rate effects, responses of antioxidant enzymes and metabolic fate of the herbicide Propanil in the aquatic plant Lemna minor. Chemosphere 62:275–284

    Article  Google Scholar 

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Article  Google Scholar 

  • Morelli E, Cioni P, Posarelli M, Gabellieri E (2012) Chemical stability of CdSe quantum dots in seawater and their effects on a marine microalga. Aquat Toxicol 122:153–162

    Article  Google Scholar 

  • Movafeghi A, Dadpour MR, Naghiloo S, Farabi S, Omidi Y (2010) Floral development in Astragalus caspicus Bieb. (Leguminosae: Papilionoideae: Galegeae). Flora 205:251–258

    Article  Google Scholar 

  • Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158

    Article  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  Google Scholar 

  • Philip D (2010) Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectrochim Acta A 77:807–810

    Article  Google Scholar 

  • Pinto E, Sigaud-kutner T, Leitao MA, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algai. J Phycol 39:1008–1018

    Article  Google Scholar 

  • Prabhu RR, Khadar MA (2005) Characterization of chemically synthesized CdS nanoparticles. Pramana 65:801–807

    Article  Google Scholar 

  • Pujalte I, Passagne I, Brouillaud B, Treguer M, Durand E, Ohayon-Courtes C, L’Azou B (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:1–16

    Article  Google Scholar 

  • Rai U, Sinha S, Tripathi R, Chandra P (1995) Wastewater treatability potential of some aquatic macrophytes: removal of heavy metals. Ecol Eng 5:5–12

    Article  Google Scholar 

  • Roco MC (2003) Broader societal issues of nanotechnology. J Nanopart Res 5:181–189

    Article  Google Scholar 

  • Santos SMA, Dinis AM, Rodrigues DMF, Peixoto F, Videira RA, Jurado AS (2013) Studies on the toxicity of an aqueous suspension of C60 nanoparticles using a bacterium (gen. Bacillus) and an aquatic plant (Lemna gibba) as in vitro model systems. Aquat Toxicol 142–143:347–354

    Article  Google Scholar 

  • Seth CS, Chaturvedi PK, Misra V (2007) Toxic effect of arsenate and cadmium alone and in combination on giant duckweed (Spirodela polyrrhiza L.) in response to its accumulation. Environ Toxicol 22:539–549

    Article  Google Scholar 

  • Song G, Gao Y, Wu H, Hou W, Zhang C, Ma H (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31:2147–2152

    Article  Google Scholar 

  • Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta A 114:144–147

    Article  Google Scholar 

  • Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D (2010) Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat Toxicol 100:178–186

    Article  Google Scholar 

  • Vafaei F, Movafeghi A, Khataee A, Zarei M, Salehi Lisar S (2013) Potential of Hydrocotyle vulgaris for phytoremediation of a textile dye: Inducing antioxidant response in roots and leaves. Ecotoxicol Environ Saf 93:128–134

    Article  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  Google Scholar 

  • Wang S, Yang S, Yang C, Li Z, Wang J, Ge W (2000) Poly (N-vinylcarbazole)(PVK) photoconductivity enhancement induced by doping with CdS nanocrystals through chemical hybridization. J Phys Chem B 104:11853–11858

    Article  Google Scholar 

  • Wen-wen C, Si-jia H, Chen-xi W, Qiang Z, Chuan-lu H, Juan D, Shu-mao D (2010) Cytotoxicity effects of nano-Fe3O4 on HeLa cells. In: Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on,. IEEE, pp 1–4

  • Winterbourn CC, McGrath BM, Carrell RW (1976) Reactions involving superoxide and normal and unstable haemoglobins. Biochem J 155:493–502

    Google Scholar 

  • Xing W, Huang W, Liu G (2010) Effect of excess iron and copper on physiology of aquatic plant Spirodela polyrrhiza (L.) Schleid. Environ Toxicol 25:103–112

    Google Scholar 

  • Zhu RR, Wang SL, Chao J, Shi DL, Zhang R, Sun XY, Yao SD (2009) Bio-effects of Nano-TiO2 on DNA and cellular ultrastructure with different polymorph and size. Mater Sci Eng C 29:691–696

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the University of Tabriz, Iran, for all support provided.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alireza Khataee or Sang Woo Joo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khataee, A., Movafeghi, A., Nazari, F. et al. The toxic effects of l-Cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza . J Nanopart Res 16, 2774 (2014). https://doi.org/10.1007/s11051-014-2774-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2774-7

Keywords

Navigation