Skip to main content
Log in

Phytotoxicity and accumulation of zinc oxide nanoparticles on the aquatic plants Hydrilla verticillata and Phragmites Australis: leaf-type-dependent responses

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The phytotoxicity and accumulation of zinc oxide nanoparticles (ZnO NPs) on aquatic plant Hydrilla verticillata and Phragmites australis were investigated using mesocosms. The percentage of dissolved Zn in the ZnO NP treatment solutions was measured along with plant shoot growth, antioxidant enzyme activity, chlorophyll content, and Zn content. The dissolution rate of ZnO NPs in Hoagland solution was inversely related to the concentration. The submerged aquatic plant H. verticillata, growth was reduced during the early stages of the experiment when exposed to the highest ZnO NP concentration (1000 mg/L), whereas the emerged aquatic plant P. australis began to show significantly reduced growth after a few weeks. The measurements of chlorophyll content, antioxidant enzyme activity, and Zn accumulation showed that P. australis was adversely affected by NPs and absorbed more Zn than H. verticillata. The results indicated that physiological differences among aquatic plants, such as whether they use leaves or roots for nutrient and water uptake, led to differences in nanoparticle toxicity. Overall, High ZnO NP concentrations caused significant phytotoxicity on aquatic plants, and low concentrations caused unpredictable phytotoxicity. Therefore, the use and disposal of zinc oxide nanoparticles should be carefully monitored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aruoja V, Dubourguier H-C, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468

    Article  CAS  Google Scholar 

  • Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584

    Article  CAS  Google Scholar 

  • Buffet P-E et al (2012) A mesocosm study of fate and effects of CuO nanoparticles on endobenthic species (Scrobicularia plana, Hediste diversicolor). Environ Sci Tech 47:1620–1628

    Google Scholar 

  • Chen RL, Barko JW (1988) Effects of freshwater macrophytes on sediment. Chem J Freshwater Ecol 4:279–289

    Article  CAS  Google Scholar 

  • Cheng X et al (2007) CH4 and N2O emissions from Spartina alterniflora and Phragmites australis in experimental mesocosms. Chemosphere 68:420–427

    Article  CAS  Google Scholar 

  • Dalla Vecchia F, Rocca NL, Moro I, De Faveri S, Andreoli C, Rascio N (2005) Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Sci 168:329–338

    Article  CAS  Google Scholar 

  • Das P, Williams CJ, Fulthorpe RR, Hoque ME, Metcalfe CD, Xenopoulos MA (2012) Changes in bacterial community structure after exposure to silver nanoparticles in natural waters. Environ Sci Tech 46:9120–9128

    Article  CAS  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Tech 41:8484–8490

    Article  CAS  Google Scholar 

  • Gupta M, Sinha S, Chandra P (1996) Copper-induced toxicity in aquatic macrophyte, Hydrilla verticillata: effect of pH. Ecotoxicology 5:23–33

    Article  CAS  Google Scholar 

  • Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresdey JL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci: Processes Impacts 17:177–185

    CAS  Google Scholar 

  • Kasemets K, Ivask A, Dubourguier H-C, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxico in Vitro 23:1116–1122

    Article  CAS  Google Scholar 

  • Keeley JE, Bowes G (1982) Gas exchange characteristics of the submerged aquatic crassulacean acid metabolism plant, Isoetes howellii. Plant Physiol 70:1455–1458

    Article  CAS  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai Y-C, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675

    Article  CAS  Google Scholar 

  • Ma G, Rengasamy P, Rathjen AJ (2003) Phytotoxicity of aluminium to wheat plants in high-pH solutions. Aus J Exp Agri 43:497–501

    Article  CAS  Google Scholar 

  • Moorer WR, Genet JM (1982) Antibacterial activity of gutta-percha cones attributed to the zinc oxide component. Oral Surg, Oral Med, Oral Pathol 53:508–517

    Article  CAS  Google Scholar 

  • OECD (Organization for economic co-operation and development) (2003) OECD Guidelines for the testing of chemicals: proposals for updating guideline 208—Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test. Available from: http://www.oecd.org/dataoecd/11/31/33653757.pdf. (accessed 20.04.13)

  • Peskin AV, Winterbourn CC (2000) A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin Chim Acta 293:157–166

    Article  CAS  Google Scholar 

  • Reed RB, Ladner DA, Higgins CP, Westerhoff P, Ranville JF (2012) Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ Toxicol Chem 31:93–99

    Article  CAS  Google Scholar 

  • Ruffini Castiglione M, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 13:2443–2449

    Article  CAS  Google Scholar 

  • Shaymurat T, Gu J, Xu C, Yang Z, Zhao Q, Liu Y, Liu Y (2012) Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicol 6:241–248

    Article  CAS  Google Scholar 

  • Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013a) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxic Environ Safety 93:60–67

    Article  CAS  Google Scholar 

  • Song U, Lee E (2010) Ecophysiological responses of plants after sewage sludge compost applications. J Plant Biol 53:259–267

    Article  CAS  Google Scholar 

  • Song U, Shin M, Lee G, Roh J, Kim Y, Lee E (2013b) Functional analysis of TiO2 nanoparticle toxicity in three plant species. Biol Trace Elem Res 155:93–103

    Article  CAS  Google Scholar 

  • Srivastava N, 2014. Interaction of cobalt nanoparticles with plants: a cytogenetical aspect. J Exp Nanosci:1–8

  • Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Gupta DK (2006) Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle. Aquat Toxicol 80:405–415

    Article  CAS  Google Scholar 

  • USEPA, U S E P A-, 2003. Ecological Soil Screening Level - Al. http://www.epa.gov/ecotox/ecossl/pdf/eco-ssl_aluminum.pdf (accessed 20.10.14).23-

  • Wang S, Liu H, Zhang Y, Xin H (2015) The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice. Environ Toxicol Chem. In press.

  • Wu B et al (2010) Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. Environ Sci Tech 44:1484–1489

    Article  CAS  Google Scholar 

  • Yoon D, Woo D, Kim J, Kim M, Kim T, Hwang E-S, Baik S (2011) Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium. J Nanopart Res 13:2543–2551

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant of Jeju National University in 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uhram Song.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, U., Lee, S. Phytotoxicity and accumulation of zinc oxide nanoparticles on the aquatic plants Hydrilla verticillata and Phragmites Australis: leaf-type-dependent responses. Environ Sci Pollut Res 23, 8539–8545 (2016). https://doi.org/10.1007/s11356-015-5982-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5982-5

Keywords

Navigation