Skip to main content
Log in

Toxicity of copper oxide nanoparticles on Spirodela polyrrhiza: assessing physiological parameters

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The surface characteristics of nanoparticles cause their influx into the environment and lead to their interaction with fungi, algae, and plants. In the present study, the toxic effects of copper oxide nanoparticles were studied on the higher aquatic plant Spirodela polyrrhiza. Copper oxide nanoparticles were synthesized using green sonochemistry and their surface specifications were determined using XRD and SEM. The entrance and uptake of CuO nanoparticles in the roots of S. polyrrhiza was confirmed using fluorescence microscopy. The toxicity of CuO nanoparticles on S. polyrrhiza was investigated by measuring the growth rate (relative frond number), enzymatic activities (peroxidase, superoxide dismutase, and catalase) and content of photosynthetic pigments. In all experiments, the negative effects of CuO nanoparticles on the growth of S. polyrrhiza were confirmed by means of growth and enzymatic and pigment assays. Accordingly, significant changes in antioxidant enzyme activity were achieved. Catalase, peroxidase, and superoxide dismutase activity were increased due to the plant's defence system for scavenging the reactive oxygen species. In addition, relative frond number and chlorophyll content were reduced owing to possible phytotoxicity generated by CuO nanoparticles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.R. Peralta-Videa, L. Zhao, M.L. Lopez-Moreno, G. de la Rosa, J. Hong, J.L. Gardea-Torresdey, J. Hazard. Mater. 186, 1 (2011)

    Article  CAS  Google Scholar 

  2. M.C. Roco, J. Nanopart. Res. 5, 3–4 (2003)

    Article  Google Scholar 

  3. X. Zhu, J. Wang, X. Zhang, Y. Chang, Y. Chen, Chemosphere 79, 9 (2010)

    Article  Google Scholar 

  4. P. Manchikanti, T.K. Bandopadhyay, NanoEthics 4, 1 (2010)

    Article  Google Scholar 

  5. E. Navarro, A. Baun, R. Behra, N.B. Hartmann, J. Filser, A.-J. Miao, A. Quigg, P.H. Santschi, L. Sigg, Ecotoxicology 17, 5 (2008)

    Article  Google Scholar 

  6. M. Moore, Environ. Int. 32, 8 (2006)

    Article  Google Scholar 

  7. A. Nel, T. Xia, L. Mädler, N. Li, Science 311, 5761 (2006)

    Article  Google Scholar 

  8. S. Jin, K. Ye, Biotechnol. Prog. 23, 1 (2007)

    Article  Google Scholar 

  9. X. Zhu, J. Wang, X. Zhang, Y. Chang, Y. Chen, Chemosphere 79, 9 (2010)

    Article  Google Scholar 

  10. A. Becheri, M. Dürr, P.L. Nostro, P. Baglioni, J. Nanopart. Res. 10, 4 (2008)

    Article  Google Scholar 

  11. L. Reijnders, J. Clean. Prod. 14, 2 (2006)

    Article  Google Scholar 

  12. C. Blaise, F. Gagné, J. Férard, P. Eullaffroy, Environ. Toxicol. 23, 5 (2008)

    Article  Google Scholar 

  13. G. Grass, C. Rensing, M. Solioz, Appl. Environ. Microbiol. 77, 5 (2011)

    Article  Google Scholar 

  14. C.E. Santo, D. Quaranta, G. Grass, Microbiologyopen 1, 1 (2012)

    Article  Google Scholar 

  15. J. Zhu, D. Li, H. Chen, X. Yang, L. Lu, X. Wang, Mater. Lett. 58, 26 (2004)

    Google Scholar 

  16. C. Saison, F. Perreault, J.-C. Daigle, C. Fortin, J. Claverie, M. Morin, R. Popovic, Aquat. Toxicol. 96, 2 (2010)

    Article  Google Scholar 

  17. N. Durán, P.D. Marcato, Nano-Antimicrobials (Springer, Berlin, 2012), pp. 337–374

    Book  Google Scholar 

  18. N. Asmathunisha, K. Kathiresan, Colloids Surf. B Biointerfaces 103, 5 (2013)

  19. A. Khataee, A. Movafeghi, F. Nazari, F. Vafaei, M.R. Dadpour, Y. Hanifehpour, S.W. Joo, J. Nanopart. Res. 16, 12 (2014)

    Article  Google Scholar 

  20. W.S. Hillman, Am. J. Bot. 46, 8 (1959)

  21. R.L. Thompson, J. Ky. Acad. Sci. 66, 2 (2005)

    Google Scholar 

  22. W. Wang, R.A. Kerstetter, T.P. Michael J. Bot. 2011, 9 (2011)

  23. E. Wangermann, E. Ashby, New Phytol. 50, 2 (1951)

    Article  Google Scholar 

  24. A. Polle, Plant Physiol. 126, 1 (2001)

    Article  Google Scholar 

  25. J.E. Weckx, H.M. Clijsters, Physiol. Plant. 96, 3 (1996)

    Article  Google Scholar 

  26. M. Hatami, M. Ghorbanpour, Turk. J. Biol. 38, 1 (2014)

    Article  Google Scholar 

  27. A. Movafeghi, M.R. Dadpour, S. Naghiloo, S. Farabi, Y. Omidi, Flora-Morphol. Distribut. Funct. Ecol. Plants 205, 4 (2010)

    Google Scholar 

  28. K. Mitsou, A. Koulianou, D. Lambropoulou, P. Pappas, T. Albanis, M. Lekka, Chemosphere 62, 2 (2006)

    Article  Google Scholar 

  29. A. Khataee, M. Fathinia, S. Joo, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 112, 13 (2013)

  30. W.F. Beyer, I. Fridovich, Anal. Biochem. 161, 2 (1987)

    Article  Google Scholar 

  31. C.C. Winterbourn, B.M. McGrath, R.W. Carrell, Biochem. J. 155, 10 (1976)

  32. B. Chance, A. Maehly, Methods Enzymol. 2, 12 (1955)

  33. R.F. Beers, I.W. Sizer, J. Biol. Chem. 195, 1 (1952)

    Google Scholar 

  34. M.M. Bradford, Anal. Biochem. 72, 1 (1976)

    Article  Google Scholar 

  35. H.K. Lichtenthaler, Methods Enzymol. 148C, 33 (1987)

  36. V.V.T. Padil, M. Černík, Int. J. Nanomed. 8, 1 (2013)

  37. D. Das, B.C. Nath, P. Phukon, S.K. Dolui, Colloids Surf. B Biointerfaces 101, 4 (2013)

  38. B. Nowack, T.D. Bucheli, Environ. Pollut. 150, 1 (2007)

    Article  Google Scholar 

  39. H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, X. Yang, Chem. Commun. 34, 3 (2009)

  40. M.H. Ghafariyan, M.J. Malakouti, M.R. Dadpour, P. Stroeve, M. Mahmoudi, Environ. Sci. Technol. 47, 18 (2013)

    Google Scholar 

  41. C. Hu, Y. Liu, X. Li, M. Li, Arch. Environ. Contamin. Toxicol. 64, 4 (2013)

    Article  Google Scholar 

  42. E.J. Gubbins, L.C. Batty, J.R. Lead, Environ. Pollut. 159, 6 (2011)

    Article  Google Scholar 

  43. J. Shi, C. Peng, Y. Yang, J. Yang, H. Zhang, X. Yuan, Y. Chen, T. Hu, Nanotoxicology 8, 2 (2014)

    Article  Google Scholar 

  44. R. El-Shahate, M. El-Araby, E. Eweda, M. El-Berashi, J. Am. Sci. 7, 1 (2011)

    Google Scholar 

  45. A. Sood, S. Pabbi, P. Uniyal, Russ. J. Plant. Physiol. 58, 4 (2011)

    Article  Google Scholar 

  46. Y. Toduka, T. Toyooka, Y. Ibuki, Environ. Sci. Technol. 46, 14 (2012)

    Article  Google Scholar 

  47. T. Pisanic, S. Jin, V. Shubayev, From in vivo and In vitro models to health risks (Wiley, London, UK, 2009)

  48. B. De Berardis, G. Civitelli, M. Condello, P. Lista, R. Pozzi, G. Arancia, S. Meschini, Toxicol. Appl. Pharmacol. 246, 3 (2010)

    Article  Google Scholar 

  49. H. Yang, C. Liu, D. Yang, H. Zhang, Z. Xi, J. Appl. Toxicol. 29, 1 (2009)

    Article  Google Scholar 

  50. T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, A.E. Nel, ACS Nano 2, 10 (2008)

    Google Scholar 

  51. S. Fenik, T. Trofimyak, Y.B. Blyum, Usp. Sovrem. Biol. 115, 3 (1995)

    Google Scholar 

  52. S. Devi, M. Prasad, Russ. J. Plant. Physiol. 52, 2 (2005)

    Article  Google Scholar 

  53. R.G. Alscher, N. Erturk, L.S. Heath, J. Exp. Bot. 53, 372 (2002)

    Article  Google Scholar 

  54. H.S. Jiang, X.N. Qiu, G.B. Li, W. Li, L.Y. Yin, Environ. Toxicol. Chem. 33, 6 (2014)

    Article  Google Scholar 

  55. H. Willekens, S. Chamnongpol, M. Davey, M. Schraudner, C. Langebartels, M. Van Montagu, D. Inzé, W. Van Camp, The EMBO J. 16, 16 (1997)

    Article  Google Scholar 

  56. S. Majumdar, J.R. Peralta-Videa, S. Bandyopadhyay, H. Castillo-Michel, J.-A. Hernandez-Viezcas, S. Sahi, J.L. Gardea-Torresdey, J. Hazard. Mater. 278, 9 (2014)

  57. A.R. Santos, A.S. Miguel, A. Macovei, C. Maycock, A. Balestrazzi, A. Oliva, P. Fevereiro, BMC Biotechnol. 13, 1 (2013)

    Article  Google Scholar 

  58. H.S. Jiang, M. Li, F.Y. Chang, W. Li, L.Y. Yin, Environ. Toxicol. Chem. 31, 8 (2012)

    Article  Google Scholar 

  59. S. Najafi, R. Heidari, R. Jamei, Bull. Environ. Pharmacol. Life Sci. 3, 2 (2014)

    Google Scholar 

  60. H. Qian, X. Peng, X. Han, J. Ren, L. Sun, Z. Fu, J. Environ. Sci. 25, 9 (2013)

    Article  Google Scholar 

  61. C. Ma, S. Chhikara, B. Xing, C. Musante, J.C. White, O.P. Dhankher, ACS Sustain. Chem. Eng. 1, 7 (2013)

    Article  Google Scholar 

  62. A. Oukarroum, S. Polchtchikov, F. Perreault, R. Popovic, Environ. Sci. Pollut. Res. 19, 5 (2012)

    Article  Google Scholar 

  63. K.-J. Dietz, M. Baier, U. Krämer, Heavy Metal Stress in Plants (Springer, Berlin, 1999), pp. 73–97

    Book  Google Scholar 

  64. A.J. Baker, P.L. Walker, Heavy Metal Toler. Plant Evolut. Asp. 2, 11 (1990)

  65. P. Harbison, Mar. Pollut. Bull. 17, 6 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the University of Tabriz (Iran) for all support and guidance. We also acknowledge the support of Iran Science Elites Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Khataee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khataee, A., Movafeghi, A., Mojaver, N. et al. Toxicity of copper oxide nanoparticles on Spirodela polyrrhiza: assessing physiological parameters. Res Chem Intermed 43, 927–941 (2017). https://doi.org/10.1007/s11164-016-2674-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2674-9

Keywords

Navigation