Skip to main content
Log in

Effect of silica nanoparticles with variable size and surface functionalization on human endothelial cell viability and angiogenic activity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Silica nanoparticles could be promising delivery vehicles for drug targeting or gene therapy. However, few studies have been undertaken to determine the biological behavior effects of silica nanoparticles on primary endothelial cells. Here we investigated uptake, cytotoxicity and angiogenic properties of silica nanoparticle with positive and negative surface charge and sizes ranging from 25 to 115 nm in primary human umbilical vein endothelial cells. Dynamic light scattering measurements and nanoparticle tracking analysis were used to estimate the dispersion status of nanoparticles in cell culture media, which was a key aspect to understand the results of the in vitro cellular uptake experiments. Nanoparticles were taken up by primary endothelial cells in a size-dependent manner according to their degree of agglomeration occurring after transfer in cell culture media. Functionalization of the particle surface with positively charged groups enhanced the in vitro cellular uptake, compared to negatively charged nanoparticles. However, this effect was contrasted by the tendency of particles to form agglomerates, leading to lower internalization efficiency. Silica nanoparticle uptake did not affect cell viability and cell membrane integrity. More interestingly, positively and negatively charged 25 nm nanoparticles did not influence capillary-like tube formation and angiogenic sprouting, compared to controls. Considering the increasing interest in nanomaterials for several biomedical applications, a careful study of nanoparticle-endothelial cells interactions is of high relevance to assess possible risks associated to silica nanoparticle exposure and their possible applications in nanomedicine as safe and effective nanocarriers for vascular transport of therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albini A, Mussi V, Parodi A, Ventura A, Principi E, Tegami S, Rocchia M, Francheschi E, Sogno I, Cammarota R, Finzi G, Sessa F, Noonan DM, Valbusa U (2010) Interactions of single-wall carbon nanotubes with endothelial cells. Nanomed Nanotechnol Biol Med 6(2):277–288. doi:10.1016/j.nano.2009.08.001

    Article  Google Scholar 

  • Alom-Ruiz SP, Anilkumar N, Shah AM (2008) Reactive oxygen species and endothelial activation. Antioxid Redox Signal 10(6):1089–1100. doi:10.1089/ars.2007.2007

    Article  Google Scholar 

  • Bagwe RP, Hilliard LR, Tan WH (2006) Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22(9):4357–4362. doi:10.1021/la052797j

    Article  Google Scholar 

  • Bardi G, Malvindi MA, Gherardini L, Costa M, Pompa PP, Cingolani R, Pizzorusso T (2010) The biocompatibility of amino functionalized CdSe/ZnS quantum-dot-Doped SiO2 nanoparticles with primary neural cells and their gene carrying performance. Biomaterials 31(25):6555–6566. doi:10.1016/j.biomaterials.2010.04.063

    Article  Google Scholar 

  • Bauer AT, Strozyk EA, Gorzelanny C, Westerhausen C, Desch A, Schneider MF, Schneider SW (2011) Cytotoxicity of silica nanoparticles through exocytosis of von Willebrand factor and necrotic cell death in primary human endothelial cells. Biomaterials 32(33):8385–8393. doi:10.1016/j.biomaterials.2011.07.078

    Article  Google Scholar 

  • Berry JP, Arnoux B, Stanislas G, Galle P, Chretien J (1977) A microanalytic study of particles transport across the alveoli: role of blood platelets. Biomedicine 27(9–10):354–357

    Google Scholar 

  • Borselli C, Oliviero O, Battista S, Ambrosio L, Netti PA (2007) Induction of directional sprouting angiogenesis by matrix gradients. J Biomed Mater Res Part A 80A(2):297–305. doi:10.1002/jbm.a.30896

    Article  Google Scholar 

  • Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res 27(5):796–810. doi:10.1007/s11095-010-0073-2

    Article  Google Scholar 

  • Graf C, Gao Q, Schuetz I, Noufele CN, Ruan W, Posselt U, Korotianskiy E, Nordmeyer D, Rancan F, Hadam S, Vogt A, Lademann J, Haucke V, Ruehl E (2012) Surface functionalization of silica nanoparticles supports colloidal stability in physiological media and facilitates internalization in cells. Langmuir 28(20):7598–7613. doi:10.1021/la204913t

    Article  Google Scholar 

  • Iijima M, Tsukada M, Kamiya H (2007) Effect of particle size on surface modification of silica nanoparticles by using silane coupling agents and their dispersion stability in methylethylketone. J Colloid Interface Sci 307(2):418–424. doi:10.1016/j.jcis.2006.11.044

    Article  Google Scholar 

  • Jo DH, Kim JH, Yu YS, Lee TG, Kim JH (2012) Antiangiogenic effect of silicate nanoparticle on retinal neovascularization induced by vascular endothelial growth factor. Nanomed Nanotechnol Biol Med 8(5):784–791. doi:10.1016/j.nano.2011.09.003

    Article  Google Scholar 

  • Kim JA, Åberg C, de Cárcer G, Malumbres M, Salvati A, Dawson KA (2013) Correction to low dose of amino-modified nanoparticles induces cell cycle arrest. ACS Nano. doi:10.1021/nn405243f

    Google Scholar 

  • Lesniak A, Fenaroli F, Monopoli MR, Aberg C, Dawson KA, Salvati A (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6(7):5845–5857. doi:10.1021/nn300223w

    Article  Google Scholar 

  • Liu X, Sun J (2010) Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-kappa B pathways. Biomaterials 31(32):8198–8209. doi:10.1016/j.biomaterials.2010.07.069

    Article  Google Scholar 

  • Liu T, Liu H, Fu C, Li L, Chen D, Zhang Y, Tang F (2013) Silica nanorattle with enhanced protein loading: a potential vaccine adjuvant. J Colloid Interface Sci 400:168–174. doi:10.1016/j.jcis.2013.03.005

    Article  Google Scholar 

  • Lu J, Liong M, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3(8):1341–1346. doi:10.1002/smll.200700005

    Article  Google Scholar 

  • Lundqvist M, Stigler J, Cedervall T, Berggard T, Flanagan MB, Lynch I, Elia G, Dawson K (2011) The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5(9):7503–7509. doi:10.1021/nn202458g

    Article  Google Scholar 

  • Luo D, Han E, Belcheva N, Saltzman WM (2004) A self-assembled, modular DNA delivery system mediated by silica nanoparticles. J Controlled Release 95(2):333–341. doi:10.1016/j.jconrel.2003.11.019

    Article  Google Scholar 

  • Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, Pompa PP (2010) Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 4(12):7481–7491. doi:10.1021/nn101557e

    Article  Google Scholar 

  • Malvindi MA, Brunetti V, Vecchio G, Galeone A, Cingolani R, Pompa PP (2012) SiO2 nanoparticles biocompatibility and their potential for gene delivery and silencing. Nanoscale 4(2):486–495. doi:10.1039/c1nr11269d

    Article  Google Scholar 

  • Merget R, Bauer T, Kupper HU, Philippou S, Bauer HD, Breitstadt R, Bruening T (2002) Health hazards due to the inhalation of amorphous silica. Arch Toxicol 75(11–12):625–634. doi:10.1007/s002040100266

    Article  Google Scholar 

  • Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7(12):779–786. doi:10.1038/nnano.2012.207

    Article  Google Scholar 

  • Montes-Burgos I, Walczyk D, Hole P, Smith J, Lynch I, Dawson K (2010) Characterisation of nanoparticle size and state prior to nanotoxicological studies. J Nanopart Res 12(1):47–53. doi:10.1007/s11051-009-9774-z

    Article  Google Scholar 

  • Nel AE, Maedler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557. doi:10.1038/nmat2442

    Article  Google Scholar 

  • Nemmar A, Hoet PHM, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, Vanbilloen H, Mortelmans L, Nemery B (2002) Passage of inhaled particles into the blood circulation in humans. Circulation 105(4):411–414. doi:10.1161/hc0402.104118

    Article  Google Scholar 

  • Ponce ML (2009) Tube formation: an in vitro matrigel angiogenesis assay. Methods Mol Biol 467:183–188

    Article  Google Scholar 

  • Rancan F, Gao Q, Graf C, Troppens S, Hadam S, Hackbarth S, Kembuan C, Blume-Peytavi U, Ruehl E, Lademann J, Vogt A (2012) Skin penetration and cellular uptake of amorphous silica nanoparticles with variable size, surface functionalization, and colloidal stability. ACS Nano 6(8):6829–6842. doi:10.1021/nn301622h

    Article  Google Scholar 

  • Shapero K, Fenaroli F, Lynch I, Cottell DC, Salvati A, Dawson KA (2011) Time and space resolved uptake study of silica nanoparticles by human cells. Mol BioSyst 7(2):371–378. doi:10.1039/c0mb00109k

    Article  Google Scholar 

  • Silvestri B, Guarnieri D, Luciani G, Costantini A, Netti PA, Branda F (2012) Fluorescent (rhodamine), folate decorated and doxorubicin charged, PEGylated nanoparticles synthesis. J Mater Sci 23(7):1697–1704. doi:10.1007/s10856-012-4634-2

    Google Scholar 

  • Tan WH, Wang KM, He XX, Zhao XJ, Drake T, Wang L, Bagwe RP (2004) Bionanotechnology based on silica nanoparticles. Med Res Rev 24(5):621–638. doi:10.1002/med.20003

    Article  Google Scholar 

  • Wang F, Bexiga MG, Anguissola S, Boya P, Simpson JC, Salvati A, Dawson KA (2013a) Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale 5(22):10868–10876. doi:10.1039/c3nr03249c

    Article  Google Scholar 

  • Wang F, Yu L, Monopoli MP, Sandin P, Mahon E, Salvati A, Dawson KA (2013b) The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomed Nanotechnol Biol Med 9(8):1159–1168. doi:10.1016/j.nano.2013.04.010

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Olimpia Oliviero for her helpful suggestions in HUVECs cell culture and angiogenesis assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Guarnieri.

Additional information

Daniela Guarnieri and Maria Ada Malvindi have equally contributed to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guarnieri, D., Malvindi, M.A., Belli, V. et al. Effect of silica nanoparticles with variable size and surface functionalization on human endothelial cell viability and angiogenic activity. J Nanopart Res 16, 2229 (2014). https://doi.org/10.1007/s11051-013-2229-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2229-6

Keywords

Navigation