Skip to main content

Advertisement

Log in

Adsorption at cell surface and cellular uptake of silica nanoparticles with different surface chemical functionalizations: impact on cytotoxicity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Silica nanoparticles are particularly interesting for medical applications because of the high inertness and chemical stability of silica material. However, at the nanoscale their innocuousness must be carefully verified before clinical use. The aim of this study was to investigate the in vitro biological toxicity of silica nanoparticles depending on their surface chemical functionalization. To that purpose, three kinds of 50 nm fluorescent silica-based nanoparticles were synthesized: (1) sterically stabilized silica nanoparticles coated with neutral polyethylene glycol molecules, (2) positively charged silica nanoparticles coated with amine groups, and (3) negatively charged silica nanoparticles coated with carboxylic acid groups. RAW 264.7 murine macrophages were incubated for 20 h with each kind of nanoparticles. Their cellular uptake and adsorption at the cell membrane were assessed by a fluorimetric assay, and cellular responses were evaluated in terms of cytotoxicity, pro-inflammatory factor production, and oxidative stress. Results showed that the highly positively charged nanoparticle were the most adsorbed at cell surface and triggered more cytotoxicity than other nanoparticle types. To conclude, this study clearly demonstrated that silica nanoparticles surface functionalization represents a key parameter in their cellular uptake and biological toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Article  Google Scholar 

  • Auffinger B, Morshed R, Tobias A, Cheng Y, Ahmed AU, Lesniak MS (2013) Drug-loaded nanoparticle systems and adult stem cells: a potential marriage for the treatment of malignant glioma? Oncotarget 4:378–396

    Google Scholar 

  • Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, DeStanchina E, Longo V, Herz E, Iyer S et al (2011) Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 121:2768–2780

    Article  Google Scholar 

  • Bhattacharjee S, de Haan LHJ, Evers NM, Jiang X, Marcelis ATM, Zuilhof H, Rietjens IMCM, Alink GM (2010) Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol 7:25

    Article  Google Scholar 

  • Bruch J, Rehn S, Rehn B, Borm PJA, Fubini B (2004) Variation of biological responses to different respirable quartz flours determined by a vector model. Int J Hyg Environ Health 207:203–216

    Article  Google Scholar 

  • Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104:2050–2055

    Article  Google Scholar 

  • Chandolu V, Dass CR (2013) Treatment of lung cancer using nanoparticle drug delivery systems. Curr Drug Discov Technol 10:170–176

    Article  Google Scholar 

  • Chung T-H, Wu S-H, Yao M, Lu C-W, Lin Y-S, Hung Y, Mou C-Y, Chen Y-C, Huang D-M (2007) The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials 28:2959–2966

    Article  Google Scholar 

  • Colilla M, Manzano M, Vallet-Regí M (2008) Recent advances in ceramic implants as drug delivery systems for biomedical applications. Int J Nanomed 3:403–414

    Google Scholar 

  • Dausend J, Musyanovych A, Dass M, Walther P, Schrezenmeier H, Landfester K, Mailänder V (2008) Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromol Biosci 8:1135–1143

    Article  Google Scholar 

  • Dell’Orco D, Lundqvist M, Oslakovic C, Cedervall T, Linse S (2010) Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS ONE 5:e10949

    Article  Google Scholar 

  • DeLoid G, Cohen JM, Darrah T, Derk R, Rojanasakul L, Pyrgiotakis G, Wohlleben W, Demokritou P (2014) Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat Commun 5:3514

    Article  Google Scholar 

  • Duffin R, Mills NL, Donaldson K (2007) Nanoparticles-a thoracic toxicology perspective. Yonsei Med J 48:561–572

    Article  Google Scholar 

  • El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287

    Article  Google Scholar 

  • Faunce TA, White J, Matthaei KI (2008) Integrated research into the nanoparticle-protein corona: a new focus for safe, sustainable and equitable development of nanomedicines. Nanomedicine 3:859–866

    Article  Google Scholar 

  • Frohlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed 7:5577–5591

    Article  Google Scholar 

  • Fubini B, Fenoglio I, Ceschino R, Ghiazza M, Martra G, Tomatis M, Borm P, Schins R, Bruch J (2004) Relationship between the state of the surface of four commercial quartz flours and their biological activity in vitro and in vivo. Int J Hyg Environ Health 207:89–104

    Article  Google Scholar 

  • Ge Y, Zhang Y, Xia J, Ma M, He S, Nie F, Gu N (2009) Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro. Colloids Surf B 73:294–301

    Article  Google Scholar 

  • Graf C, Gao Q, Schütz I, Noufele CN, Ruan W, Posselt U, Korotianskiy E, Nordmeyer D, Rancan F, Hadam S et al (2012) Surface functionalization of silica nanoparticles supports colloidal stability in physiological media and facilitates internalization in cells. Langmuir 28:7598–7613

    Article  Google Scholar 

  • Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 105:11613–11618

    Article  Google Scholar 

  • Greish K, Thiagarajan G, Herd H, Price R, Bauer H, Hubbard D, Burckle A, Sadekar S, Yu T, Anwar A et al (2011) Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology 6:713–723

    Article  Google Scholar 

  • Guarnieri D, Malvindi MA, Belli V, Pompa PP, Netti P (2014) Effect of silica nanoparticles with variable size and surface functionalization on human endothelial cell viability and angiogenic activity. J Nanopart Res 16:1–14

    Article  Google Scholar 

  • Hu Y, Xie J, Tong YW, Wang C-H (2007) Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. J Controlled Release 118:7–17

    Article  Google Scholar 

  • Huang D-M, Hung Y, Ko B-S, Hsu S-C, Chen W-H, Chien C-L, Tsai C-P, Kuo C-T, Kang J-C, Yang C-S et al (2005) Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. FASEB J 19:2014–2016

    Article  Google Scholar 

  • ISO TS/13014 (2012)—International Organization for Standardization—Nanotechnologies—Guidance on physico-chemical characterization of engineered nanoscale materials for toxicologic assessment. http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=52334

  • Landsiedel R, Ma-Hock L, Hofmann T, Wiemann M, Strauss V, Treumann S, Wohlleben W, Gröters S, Wiench K, van Ravenzwaay B (2014) Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials. Part Fibre Toxicol 11:16

    Article  Google Scholar 

  • Lankoff A, Arabski M, Wegierek-Ciuk A, Kruszewski M, Lisowska H, Banasik-Nowak A, Rozga-Wijas K, Wojewodzka M, Slomkowski S (2013) Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro. Nanotoxicology 7:235–250

    Article  Google Scholar 

  • Leclerc L, Boudard D, Pourchez J, Forest V, Sabido O, Bin V, Palle S, Grosseau P, Bernache D, Cottier M (2010) Quantification of microsized fluorescent particles phagocytosis to a better knowledge of toxicity mechanisms. Inhal Toxicol 22:1091–1100

    Article  Google Scholar 

  • Leclerc L, Boudard D, Pourchez J, Forest V, Marmuse L, Louis C, Bin V, Palle S, Grosseau P, Bernache-Assollant D et al (2012a) Quantitative cellular uptake of double fluorescent core-shelled model submicronic particles. J Nanopart Res 14:1–13

    Article  Google Scholar 

  • Leclerc L, Rima W, Boudard D, Pourchez J, Forest V, Bin V, Mowat P, Perriat P, Tillement O, Grosseau P et al (2012b) Size of submicrometric and nanometric particles affect cellular uptake and biological activity of macrophages in vitro. Inhal Toxicol 24:580–588

    Article  Google Scholar 

  • Lidén G (2011) The European commission tries to define nanomaterials. Ann Occup Hyg 55:1–5

    Article  Google Scholar 

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. PNAS 105:14265–14270

    Article  Google Scholar 

  • Luzio JP, Poupon V, Lindsay MR, Mullock BM, Piper RC, Pryor PR (2003) Membrane dynamics and the biogenesis of lysosomes. Mol Membr Biol 20:141–154

    Article  Google Scholar 

  • Martini M, Perriat P, Montagna M, Pansu R, Julien C, Tillement O, Roux S (2009) How gold particles suppress concentration quenching of fluorophores encapsulated in silica beads. J Phys Chem C 113:17669–17677

    Article  Google Scholar 

  • Mignot A, Truillet C, Lux F, Sancey L, Louis C, Denat F, Boschetti F, Bocher L, Gloter A, Stéphan O et al (2013) A top-down synthesis route to ultrasmall multifunctional Gd-based silica nanoparticles for theranostic applications. Chemistry 19:6122–6136

    Article  Google Scholar 

  • Munkholm C, Parkinson DR, Walt DR (1990) Intramolecular fluorescence self-quenching of fluoresceinamine. J Am Chem Soc 112:2608–2612

    Article  Google Scholar 

  • Mura S, Hillaireau H, Nicolas J, Le Droumaguet B, Gueutin C, Zanna S, Tsapis N, Fattal E (2011) Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells. Int J Nanomed 6:2591–2605

    Google Scholar 

  • Musyanovych A, Dausend J, Dass M, Walther P, Mailänder V, Landfester K (2011) Criteria impacting the cellular uptake of nanoparticles: a study emphasizing polymer type and surfactant effects. Acta Biomater 7:4160–4168

    Article  Google Scholar 

  • Nabeshi H, Yoshikawa T, Arimori A, Yoshida T, Tochigi S, Hirai T, Akase T, Nagano K, Abe Y, Kamada H et al (2011) Effect of surface properties of silica nanoparticles on their cytotoxicity and cellular distribution in murine macrophages. Nanoscale Res Lett 6:93

    Article  Google Scholar 

  • Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH (2010) The nanosilica hazard: another variable entity. Part Fibre Toxicol 7:39

    Article  Google Scholar 

  • Nuutila J, Lilius E-M (2005) Flow cytometric quantitative determination of ingestion by phagocytes needs the distinguishing of overlapping populations of binding and ingesting cells. Cytometry A 65:93–102

    Article  Google Scholar 

  • Ohkuma S, Poole B (1978) Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A 75:3327–3331

    Article  Google Scholar 

  • Panas A, Marquardt C, Nalcaci O, Bockhorn H, Baumann W, Paur H-R, Mülhopt S, Diabaté S, Weiss C (2013) Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages. Nanotoxicology 7:259–273

    Article  Google Scholar 

  • Qiu Y, Liu Y, Wang L, Xu L, Bai R, Ji Y, Wu X, Zhao Y, Li Y, Chen C (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31:7606–7619

    Article  Google Scholar 

  • Rancan F, Gao Q, Graf C, Troppens S, Hadam S, Hackbarth S, Kembuan C, Blume-Peytavi U, Rühl E, Lademann J et al (2012) Skin penetration and cellular uptake of amorphous silica nanoparticles with variable size, surface functionalization, and colloidal stability. ACS Nano 6:6829–6842

    Article  Google Scholar 

  • Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine–challenge and perspectives. Angew Chem Int Ed Engl 48:872–897

    Article  Google Scholar 

  • Seaton A, Donaldson K (2005) Nanoscience, nanotoxicology, and the need to think small. Lancet 365:923–924

    Article  Google Scholar 

  • Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288

    Article  Google Scholar 

  • Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7:22

    Article  Google Scholar 

  • Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C et al (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8:772–781

    Article  Google Scholar 

  • Vallet-Regi M, Balas F (2008) Silica materials for medical applications. Open Biomed Eng J 2:1–9

    Article  Google Scholar 

  • Van Amersfoort ES, Van Strijp JA (1994) Evaluation of a flow cytometric fluorescence quenching assay of phagocytosis of sensitized sheep erythrocytes by polymorphonuclear leukocytes. Cytometry 17:294–301

    Article  Google Scholar 

  • Walkey CD, Chan WCW (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799

    Article  Google Scholar 

  • Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134:2139–2147

    Article  Google Scholar 

  • Yu T, Malugin A, Ghandehari H (2011) Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 5:5717–5728

    Article  Google Scholar 

  • Yue Z-G, Wei W, Lv P-P, Yue H, Wang L-Y, Su Z-G, Ma G-H (2011) Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules 12:2440–2446

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Région Rhône-Alpes and the Conseil Général de la Loire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kurtz-Chalot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurtz-Chalot, A., Klein, J.P., Pourchez, J. et al. Adsorption at cell surface and cellular uptake of silica nanoparticles with different surface chemical functionalizations: impact on cytotoxicity. J Nanopart Res 16, 2738 (2014). https://doi.org/10.1007/s11051-014-2738-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2738-y

Keywords

Navigation