Skip to main content
Log in

Synthesis, characterization and mechanistic insights of mycogenic iron oxide nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In the present study, extracellular synthesis of iron oxide nanoparticles (IONPs) was achieved using Aspergillus japonicus isolate AJP01. The isolate demonstrated its ability to hydrolyze the precursor salt solution, a mixture of iron cyanide complexes, under ambient conditions. Hydrolysis of these complexes released ferric and ferrous ions, which underwent protein-mediated coprecipitation and controlled nucleation resulting in the formation of IONPs. Transmission electron microscopy, selected area electron diffraction pattern, energy dispersive spectroscopy and grazing incidence X-ray diffraction analysis confirmed the mycosynthesis of IONPs. The synthesized particles were cubic in shape with a size range of 60–70 nm with crystal structure corresponding to magnetite. Scanning electron microscopy analysis revealed the absence of IONPs on fungal biomass surface, indicating the extracellular nature of synthesis. Fourier transform infrared spectroscopy confirmed the presence of proteins on as-synthesised IONPs, which may confer their stability. Preliminary investigation indicated the role of proteins in the synthesis and stabilization of IONPs. On the basis of present findings, a probable mechanism for synthesis of IONPs is suggested. The simplicity and versatility of the present approach can be utilized for the synthesis of other nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2:22–32. doi:10.1016/S1748-0132(07)70084-1

    Article  Google Scholar 

  • Barclay M, Hart A, Knowles CJ, Meeussen JCL, Tett VA (1998) Biodegradation of metal cyanides by mixed and pure cultures of fungi. Enzyme Microb Technol 22:223–231. doi:10.1016/S0141-0229(97)00171-3

    Article  CAS  Google Scholar 

  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141. doi:10.1002/smll.200500180

    Article  CAS  Google Scholar 

  • Bhargava A, Jain N, Panwar J (2011) Synthesis and application of magnetic nanoparticles: a biological perspective. In: Dhingra HK, Jha PN, Bajpai P (eds) Current topics in biotechnology and microbiology: recent trends. Lap Lambert Academic Publishing AG & Co Kg, Colne, pp 117–155

    Google Scholar 

  • Dhillon GS, Brar SK, Kaur S, Verma M (2011) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32:49–73. doi:10.3109/07388551.2010.550568

    Article  Google Scholar 

  • Dumestre A, Chone T, Portal J, Gerard M, Berthelin J (1997) Cyanide degradation under alkaline conditions by a strain of Fusarium solani isolated from contaminated soils. Appl Environ Microbiol 63:2729–2734

    CAS  Google Scholar 

  • Durán N, Marcato P, Durán M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol 90:1609–1624. doi:10.1007/s00253-011-3249-8

    Article  Google Scholar 

  • Ebbs S (2004) Biological degradation of cyanide compounds. Curr Opin Biotechnol 15:231–236. doi:10.1016/j.copbio.2004.03.006

    Article  CAS  Google Scholar 

  • Fedlheim DL, Foss CA (2001) Metal nanoparticles: synthesis, characterization, and applications. CRC Press, Boca Raton

    Google Scholar 

  • Gade A, Ingle A, Whiteley C, Rai M (2010) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32:593–600. doi:10.1007/s10529-009-0197-9

    Article  CAS  Google Scholar 

  • Gibbs CR (1976) Characterization and application of ferrozine iron reagent as a ferrous iron indicator. Anal Chem 48:1197–1201. doi:10.1021/ac50002a034

    Article  CAS  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    CAS  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641. doi:10.1039/C0NR00656D

    Article  CAS  Google Scholar 

  • Jain N, Bhargava A, Tarafdar JC, Singh SK, Panwar J (2013) A biomimetic approach towards synthesis of zinc oxide nanoparticles. Appl Microbiol Biotechnol 97:859–869. doi:10.1007/s00253-012-3934-2

    Article  CAS  Google Scholar 

  • Jogler C, Lin W, Meyerdierks A, Kube M, Katzmann E, Flies C, Pan Y, Amann R, Reinhardt R, Schüler D (2009) Toward cloning of the magnetotactic metagenome: identification of magnetosome island gene clusters in uncultivated magnetotactic bacteria from different aquatic sediments. Appl Environ Microbiol 75:3972–3979. doi:10.1128/AEM.02701-08

    Article  CAS  Google Scholar 

  • Jun YW, Seo JW, Cheon J (2008) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 41:179–189. doi:10.1021/ar700121f

    Article  CAS  Google Scholar 

  • Komeili A (2007) Molecular mechanisms of magnetosome formation. Annu Rev Biochem 76:351–366. doi:10.1146/annurev.biochem.74.082803.133444

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110. doi:10.1021/cr068445e

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Macdonald IDG, Smith WE (1996) Orientation of cytochrome c adsorbed on a citrate-reduced silver colloid surface. Langmuir 12:706–713. doi:10.1021/la950256w

    Article  CAS  Google Scholar 

  • Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Hoag GE, Suib SL (2010) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27:264–271. doi:10.1021/la103190n

    Article  Google Scholar 

  • Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806–3819. doi:10.1021/jp066539m

    Article  CAS  Google Scholar 

  • O’Donnell K, Nirenberg H, Aoki T, Cigelnik E (2000) A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience 41:61–78. doi:10.1007/BF02464387

    Article  Google Scholar 

  • Parikh RY, Ramanathan R, Coloe PJ, Bhargava SK, Patole MS, Shouche YS, Bansal V (2011) Genus-wide physicochemical evidence of extracellular crystalline silver nanoparticles biosynthesis by Morganella spp. PLoS ONE 6:e21401. doi:10.1371/journal.pone.0021401

    Article  CAS  Google Scholar 

  • Patil S, Sandberg A, Heckert E, Self W, Seal S (2007) Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28:4600–4607. doi:10.1016/j.biomaterials.2007.07.029

    Article  CAS  Google Scholar 

  • Riemer J, Hoepken HH, Czerwinska H, Robinson SR, Dringen R (2004) Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal Biochem 331:370–375. doi:10.1016/j.ab.2004.03.049

    Article  CAS  Google Scholar 

  • Schnurer J (1993) Comparison of methods for estimating the biomass of three food-borne fungi with different growth patterns. Appl Environ Microbiol 59:552–555

    CAS  Google Scholar 

  • Sherman DM, Waite TD (1985) Electronic spectra of Fe (super 3+) oxides and oxide hydroxides in the near IR to near UV. Am Mineral 70:1262–1269

    CAS  Google Scholar 

  • Simpson RJ (2004) Purifying proteins for proteomics: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sun YK, Ma M, Zhang Y, Gu N (2004) Synthesis of nanometer-size maghemite particles from magnetite. Colloids Surf A 245:15–19. doi:10.1016/j.colsurfa.2004.05.009

    Article  CAS  Google Scholar 

  • Takekiyo T, Wu L, Yoshimura Y, Shimizu A, Keiderling TA (2009) Relationship between hydrophobic interactions and secondary structure stability for trpzip β-hairpin peptides. Biochemistry 48:1543–1552. doi:10.1021/bi8019838

    Article  CAS  Google Scholar 

  • Teja AS, Koh PY (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55:22–45. doi:10.1016/j.pcrysgrow.2008.08.003

    Article  CAS  Google Scholar 

  • Wang C, Zhang Y, Seng HS, Ngo LL (2006) Nanoparticle-assisted micropatterning of active proteins on solid substrate. Biosens Bioelectron 21:1638–1643. doi:10.1016/j.bios.2005.07.008

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Williams M (1997) The Merck Index, 12th Edition. CD-Rom Version 12.1. Drug Dev Res 41:108–108. doi:10.1002/(SICI)1098-2299(199706)41:2<108::AID-DDR9>3.0.CO;2-L

  • Wu Z, Neaton JB, Grossman JC (2008) Quantum confinement and electronic properties of tapered silicon nanowires. Phys Rev Lett 100:e246804. doi:10.1103/PhysRevLett.100.246804

    Article  Google Scholar 

  • Yang T, Li Z, Wang L, Guo C, Sun Y (2007) Synthesis, characterization, and self-assembly of protein lysozyme monolayer-stabilized gold nanoparticles. Langmuir 23:10533–10538. doi:10.1021/la701649z

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Indian Council of Agricultural Research, Government of India under the National Agricultural Innovation Project scheme (NAIP/C4/C-2032). Facilities provided by the Chonbuk National University, Jeonju, Republic of Korea, Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi, India and Birla Institute of Technology and Science, Pilani, India are gratefully acknowledged. Arpit Bhargava and Navin Jain are thankful to the Indian Council of Agricultural Research and Council of Scientific and Industrial Research, Government of India, respectively, for providing research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Panwar.

Additional information

Special Issue Editors: Mamadou Diallo, Neil Fromer, Myung S. Jhon

This article is part of the Topical Collection on Nanotechnology for Sustainable Development

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 504 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhargava, A., Jain, N., Barathi L., M. et al. Synthesis, characterization and mechanistic insights of mycogenic iron oxide nanoparticles. J Nanopart Res 15, 2031 (2013). https://doi.org/10.1007/s11051-013-2031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2031-5

Keywords

Navigation