Skip to main content
Log in

Biocompatible nanotubes as potential carrier for curcumin as a model bioactive compound

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We show the ability of poly-d-lysine (PDL) and BSA to form bionanotubes (BNTs) through layer by layer deposition. The process is driven through electrostatic interactions in the interior of a polycarbonate template’s nanopores with a diameter of 400 nm. The BNTs are optimally formed at pH 7.4, where the difference in the magnitude of opposite charge is largest. The results show that three bilayers are necessary to form a stable BNT. SEM data shows that well-formed, uniform, and strong BNTs are formed when three bilayers are used and progressively malformed nanotubes are observed with two and one bilayer. Our studies on the evaluation of curcumin encapsulation into the BNTs with two different interior layers show that encapsulation is favored when the interior layer is predominantly made of BSA. BNTs with a BSA interior have the most efficient encapsulation with an efficiency reaching a maximum of 45 %. We achieved loading capacities in the range of 0.20–0.27 g/g of BNT. We also report the entrapment/encapsulation of curcumin by BNTs made by mixing first BSA with curcumin in a water ethanol solution and then using the curcumin bound BSA solution with PDL to construct BNTs. The SEM images show that the (PDL/BSA–Cur)2 BNTs had relatively large hydrophobic cavities demonstrated by the fact that an aqueous solution couldn’t pass through them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alem H, Blondeau F, Glinel K, Demoustier-Champagne S, Jonas AM (2007) Layer-by-layer assembly of polyelectrolytes in nanopores. Macromolecules 40:3366–3372

    Article  CAS  Google Scholar 

  • Altunbas A, Lee SJ, Rajasekaran SA, Schneider JP, Pochan DJ (2011) Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials 32(25):5906–5914

    Article  CAS  Google Scholar 

  • Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR, Aggarwal BB (2010) Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol 79(3):330–338

    Article  CAS  Google Scholar 

  • Ballister ER, Lai AH, Zuckermann RN, Cheng Y, Mougous JD (2008) In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci USA 105(10):3733–3738

    Article  CAS  Google Scholar 

  • Bourassa P, Kanakis CD, Tarantilis P, Pollissiou MG, Tajmir-Riahi HA (2010) Resveratrol, genistein, and curcumin bind bovine serum albumin. J Phys Chem B 114(9):3348–3354

    Article  CAS  Google Scholar 

  • Collins PG, Zettl A, Bando H, Thess A, Smalley RE (1997) Nanotube nanodevice. Science 278(5335):100–103

    Article  CAS  Google Scholar 

  • Cuenot S, Alem H, Louarn G, Demoustier-Champagne S, Jonas AM (2008) Mechanical properties of nanotubes of polyelectrolyte multilayers. Eur Phys J E 25:343–348

    Article  CAS  Google Scholar 

  • Das RK, Kasoju N, Bora U (2010) Encapsulation of curcumin in alginate–chitosan–pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine 6(1):e153–e160

    Article  Google Scholar 

  • Dhule SS, Penfornis P, Frazier T, Walker R, Feldman J, Tan G, He J, Alb A, John V, Pochampally R (2012) Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine 8(4):440–451

    Article  CAS  Google Scholar 

  • Dougherty SA, Zhang D, Liang J (2009a) Fabrication of protein nanotubes using template-assisted electrostatic layer-by-layer methods. Langmuir 25(22):13232–13237

    Article  CAS  Google Scholar 

  • Dougherty SA, Liang J, Kowalik TF (2009b) Template-assisted fabrication of protein nanocapsules. J Nanopart Res 11:385–394

    Article  CAS  Google Scholar 

  • Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249–255

    Article  CAS  Google Scholar 

  • Graveland-Bikker JF, Koning RI, Koerten HK, Geels RBJ, Heeren RMA, de Kruif CG (2009) Structural characterization of α-lactalbumin nanotubes. Soft Matter 5:2020–2026

    Article  CAS  Google Scholar 

  • Hou S, Wang J, Martin CR (2005) Template-synthesized protein nanotubes. Nano Lett 5:231–234

    Article  CAS  Google Scholar 

  • Koley P, Pramanik A (2012) Multilayer vesicles, tubes, various porous structures and organo gels through the solvent-assisted self-assembly of two modified tripeptides and their different applications. Soft Matter 8(19):5364–5374

    Article  CAS  Google Scholar 

  • Komatsu T, Kobayashi N (2011) Protein nanotubes bearing a magnetite surface exterior. Polym Adv Technol 22:1315–1318

    Article  CAS  Google Scholar 

  • Komatsu T, Terada H, Kobayashi N (2011a) Protein nanotubes with an enzyme interior surface. Chemistry 17:1849–1854

    Article  CAS  Google Scholar 

  • Komatsu T, Qu X, Ihara H, Fujihara M, Azuma H, Ikeda H (2011b) Virus trap in human serum albumin nanotube. J Am Chem Soc 133:3246–3248

    Article  CAS  Google Scholar 

  • Kumara MT, Srividya N, Muralidharan S, Tripp BC (2006) Bioengineered flagella protein nanotubes with cysteine loops: self-assembly and manipulation in an optical trap. Nano Lett 6(9):2121–2129

    Article  CAS  Google Scholar 

  • Kunnumakkara AB, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal BB (2007) Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-KB-regulated gene products. Cancer Res 67(8):3853–3861

    Article  CAS  Google Scholar 

  • Kunwar A, Barik A, Pandey R, Priyadarsini KI (2006) Transport of liposomal and albumin loaded curcumin to living cells: AN absorption and fluorescence spectroscopic study. BBA-Gen Subj 1760(10):1513–1520

    Article  CAS  Google Scholar 

  • Leung MHM, Colangelo H, Kee TW (2008) Encapsulation of curcumin in cationic micelles suppresses alkaline hydrolysis. Langmuir 24(11):5672–5675

    Article  CAS  Google Scholar 

  • Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2(2):85–120

    Article  CAS  Google Scholar 

  • Livney YD (2010) Milk proteins as vehicles for bioactives. Curr Opin Colloid Interface 15(1–2):73–83

    Article  CAS  Google Scholar 

  • Lu G, Ai S, Li J (2005) Layer-by-layer assembly of human serum albumin and phospholipid nanotubes based on a template. Langmuir 21:1679–1682

    Article  CAS  Google Scholar 

  • Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78:2081–2087

    Article  CAS  Google Scholar 

  • Manju S, Sreenivasan K (2011) Hollow microcapsules built by layer by layer assembly for the encapsulation and sustained release of curcumin. Colloid Surf B 82:588–593

    Article  CAS  Google Scholar 

  • Mukherjee S, Pfeifer CM, Johnson JM, Liu J, Zlotnick A (2006) Redirecting the coat protein of a spherical virus to assemble into tubular nanostructures. J Am Chem Soc 128:2538–2539

    Article  CAS  Google Scholar 

  • Narayanan NK, Nargi D, Randolph C, Narayanan BA (2009) Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int J Cancer 125(1):1–8

    Article  CAS  Google Scholar 

  • Qu X, Komatsu T (2010) Molecular capture in protein nanotubes. ACS Nano 4(1):563–573

    Article  CAS  Google Scholar 

  • Qu X, Lu G, Tsuchida E, Komatsu T (2008) Protein nanotubes comprised of an alternate layer-by-layer assembly using a polycation as an electrostatic glue. Chem Eur J 14:10303–10308

    Article  CAS  Google Scholar 

  • Raviv U, Needleman DJ, Ewert KK, Safinya CR (2007) Hierarchical bionanotubes formed by the self-assembly of microtubules with cationic membranes or polypeptides. J Appl Crystallogr 40:s83–s87

    Article  CAS  Google Scholar 

  • Roy CJ, Dupont-Gillain C, Demoustier-Champagne S, Jonas AM, Landoulsi J (2010) Growth mechanism of confined polyelectrolyte multilayers in nanoporous templates. Langmuir 26(5):3350–3355

    Article  CAS  Google Scholar 

  • Sahu A, Kasoju N, Bora U (2008) Fluorescence study of the curcumin–casein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromolecules 9(10):2905–2912

    Article  CAS  Google Scholar 

  • Sahu A, Kasoju N, Goswami P, Bora U (2011) Encapsulation of curcumin in Pluronic block copolymer micelles for drug delivery applications. J Biomater Appl 25(6):619–639

    Article  CAS  Google Scholar 

  • Salvioli S, Sikora E, Cooper EL, Franceschi C (2007) Curcumin in cell death processes: a challenge for CAM of age-related pathologies. Evid-based Compl Alt 4(2):181–190

    Article  CAS  Google Scholar 

  • Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A 253(2):337–358

    Article  CAS  Google Scholar 

  • Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MNVR (2009) Nanoparticle encapsulation improves oral bioavailability of curcumin by at least ninefold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci 37(3–4):223–230

    Article  CAS  Google Scholar 

  • Skrt M, Benedik E, Podlipnik C, Ulrih NP (2012) Interactions of different polyphenols with bovine serum albumin using fluorescence quenching and molecular docking. Food Chem 135:2418–2424

    Article  CAS  Google Scholar 

  • Son SJ, Bai X, Nan A, Ghandehari H, Lee SB (2006) Template synthesis of multifunctional nanotubes for controlled release. J Control Release 114:143–152

    Article  CAS  Google Scholar 

  • Tian Y, He Q, Cui Y, Li J (2006) Fabrication of protein nanotubes based on layer-by-layer assembly. Biomacromolecules 7:2539–2542

    Article  CAS  Google Scholar 

  • Valéry C, Paternostre M, Robert B, Gulik-Krzywicki T, Narayanan T, Dedieu J-C, Keller G, Torres M-L, Cherif-Cheikh R, Calvo P, Artzner F (2003) Biomimetic organization: octapeptide self-assembly into nanotubes of viral capsid-like dimension. Proc Natl Acad Sci USA 100(18):10258–10262

    Article  Google Scholar 

  • Wang Z, Leung MHM, Kee TW, English DS (2010) The role of charge in the surfactant-assisted stabilization of the natural product curcumin. Langmuir 26(8):5520–5526

    Article  CAS  Google Scholar 

  • Wang N, Guan Y, Yang L, Jia L, Wei X, Liu H, Guo C (2013) Magnetic nanoparticles (MNPs) covalently coated by PEO–PPO–PEO block copolymer for drug delivery. J Colloid Interface Sci 395(1):50–57

    Article  CAS  Google Scholar 

  • Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM (1998) Covalently functionalized nanotubes as nanometresized probes in chemistry and biology. Nature 394(6688):52–55

    Article  CAS  Google Scholar 

  • Yang Y, He Q, Duan L, Cui Y, Li J (2007) Assembled alginate/chitosan nanotubes for biological application. Biomaterials 28:3083–3090

    Article  CAS  Google Scholar 

  • Zhang D, Dougherty SA, Liang J (2011) Fabrication of bovine serum albumin nanotubes through template-assisted layer by layer assembly. J Nanopart Res 13:1563–1571

    Article  CAS  Google Scholar 

  • Zheng Z, Zhang X, Carbo D, Clark C, Nathan C-A, Lvov Y (2010) Sonication-assisted synthesis of polyelectrolyte-coated curcumin nanoparticles. Langmuir 26(11):7679–7681

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The majority of the work in this paper was physically conducted at the University of Illinois. Rohollah Sadeghi came to the University of Illinois with a Fellowship from the Ministry of Science Research and Technology of Iran. The support of Rohollah Sadeghi from USDA Hatch funds, the Materials Research Lab, the use of the spectrophotometer in Dr. Bhalerao’s lab are gratefully acknowledged. The support of the University of Tehran, Iran National Science Foundation, Center of Excellence in Biothermodynamics, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Kokini or A. A. Moosavi-Movahedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadeghi, R., Kalbasi, A., Emam-jomeh, Z. et al. Biocompatible nanotubes as potential carrier for curcumin as a model bioactive compound. J Nanopart Res 15, 1931 (2013). https://doi.org/10.1007/s11051-013-1931-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1931-8

Keywords

Navigation