Skip to main content
Log in

Template-assisted fabrication of protein nanocapsules

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Bionanomaterials have recently begun to spark a great amount of interest and could potentially revolutionize biomedical research. Nanoparticles, nanocapsules, and nanotubular structures are becoming attractive options in drug and gene delivery. The size of the delivery vehicles greatly impacts cellular uptake and makes it highly desirable to precisely control the diameter and length of nanocarriers to make uniform nanoparticles at low cost. Carbon nanotubes have shown great potential within the field of drug and gene delivery. However, their insolubility and cytotoxicity could severely delay FDA approval. A desirable alternative would be to fabricate nanostructures from biomaterials such as proteins, peptides, or liposomes, which are already FDA approved. In this article we demonstrate the preparation of protein nanocapsules with both ends sealed using a template-assisted alternate immersion method combined with controlled cleaving. Glucose oxidase nanocapsules with controllable diameter, wall thickness, and length were fabricated and characterized with SEM and TEM. The biochemical activity of glucose oxidase in the form of nanocapsules after processing was confirmed using UV spectrometry. Our future work will explore proteins suitable for drug encapsulation and cellular uptake and will focus on optimizing the cleaving process to gain precise control over the length of the nanocapsules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Audette GF, van Schaik EJ, Hazes B et al (2004) DNA-binding protein nanotubes: learning from nature’s nanotech examples. Nano Lett 4:1897–1902

    Article  CAS  Google Scholar 

  • Baker LA, Jin P, Martin CR (2005) Biomaterials and biotechnologies based on nanotube membranes. Crit Rev Solid State Mater Sci 30:183–205

    Article  ADS  CAS  Google Scholar 

  • Bianco A, Prato M (2003) Can carbon nanotubes be considered useful tools for biological applications? Adv Mater 15:1765–1768

    Article  CAS  Google Scholar 

  • Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679

    Article  PubMed  CAS  Google Scholar 

  • Chen JF, Ding HM, Wang JX et al (2004) Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials 25:723–727

    Article  PubMed  Google Scholar 

  • Couet J, Biesalski M (2006) Surface-initiated ATRP of N-isopropylacrylamide from initiator-modified self-assembled peptide nanotubes. Macromolecules 39:7258–7268

    Article  CAS  Google Scholar 

  • Courvreur P, Gref R, Andrieux K et al (2006) Nanotechnologies for drug delivery: Application to cancer and autoimmune diseases. Prog Solid State Chem 34:231–235

    Article  Google Scholar 

  • Cui D, Tian F, Ozkan CS et al (2005) Effect of single walled carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73–85

    Article  PubMed  CAS  Google Scholar 

  • Decuzzi P, Ferrari M (2007) The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials 28:2915–2922

    Article  PubMed  CAS  Google Scholar 

  • Fifis T, Gamvrellis A, Crimeen-Irwin B et al (2004) Size-dependent immunogenicity: Therapeutic and protective properties of nano-vaccines against Tumors. J Immunol 173:3148–3154

    PubMed  CAS  Google Scholar 

  • Gao H, Shi W, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci U.S.A 102:9469–9474

    Article  PubMed  ADS  CAS  Google Scholar 

  • Gao L, Nie L, Wang T et al (2006) Carbon nanotube delivery of the GFP Gene into mammalian cells. ChemBioChem 7:239–242

    Article  PubMed  CAS  Google Scholar 

  • Ghadiri MR, Granja JR, Milligan RA et al (1993) Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366:324–327

    Article  PubMed  ADS  CAS  Google Scholar 

  • Harashima H, Sakata K, Funato K et al (1994) Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm Res 11:402–406

    Article  PubMed  CAS  Google Scholar 

  • Hou S, Wang J, Martin CR (2005) Template-synthesized protein nanotubes. Nano Lett 5:231–234

    Article  PubMed  CAS  Google Scholar 

  • Kakizawa Y, Furukawa S, Ishii A et al (2006) Organic-inorganic hybrid-nanocarrier of siRNA constructing through the self-assembly of calcium phosphate and PEG based block anomer. J Control Release 111:368–370

    Article  PubMed  CAS  Google Scholar 

  • Klumpp C, Kostarelos K, Prato M et al (2006) Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta 1758:404–412

    Article  PubMed  CAS  Google Scholar 

  • Kol N, Adler-Abramovich L, Barlam D et al (2005) Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett 5:1343–1346

    Article  PubMed  CAS  Google Scholar 

  • Langer K, Balthasar S, Vogel V et al (2003) Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm 257:169–180

    Article  PubMed  CAS  Google Scholar 

  • Liang J, Chik H, Yin A et al (2002) Two-dimensional lateral superlattices of nanostructures: Nonlithographic formation by anodic membrane template. J Appl Phys 91:2544–2546

    Article  ADS  CAS  Google Scholar 

  • Lu G, Ai S, Li J (2005) Layer-by-layer assembly of human serum albumin and phospholipids nanotubes based on a template. Langmuir 21:1679–1682

    Article  PubMed  CAS  Google Scholar 

  • Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2:29–37

    Article  PubMed  CAS  Google Scholar 

  • Matsumura S, Uemura S, Mihara H (2005) Construction of biotinylated peptide nanotubes for arranging proteins. Mol Biosyst 1:146–148

    Article  PubMed  CAS  Google Scholar 

  • McKenzie JL, Waid MC, Shi R et al (2003) Decreased functions of astrocytes on carbon nanofiber materials. Biomaterials 25:1309–1317

    Article  Google Scholar 

  • Neuberger T, Schopf B, Hofmann H et al (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496

    Article  ADS  CAS  Google Scholar 

  • Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112:630–648

    Article  PubMed  CAS  Google Scholar 

  • Panarotto D, Briand J, Prato M et al (2004a) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun 1:16–17

    Article  Google Scholar 

  • Pantarotto D, Singh R, McCarthy D et al (2004b) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed 43:5242–5246

    Article  CAS  Google Scholar 

  • Park KH, Chhowalla M, Iqbal Z et al (2003) Single-walled carbon nanotubes are a new class of ion channel blockers. J Biol Chem 278:50212–50216

    Article  PubMed  CAS  Google Scholar 

  • Putnam D (2006) Polymers for gene delivery across length scales. Nat Mater 5:439–451

    Article  PubMed  ADS  CAS  Google Scholar 

  • Shi Kam NW, Dai H (2005) Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J Am Chem Soc 127:6021–5026

    Article  Google Scholar 

  • Shvedova A, Castranova V, Kisin E et al (2003) Exposure to carbon nanotube material: Assessment of carbon nanotube cytotixicity using human keratinocyte cells. J Toxicol Environ Health A 66:1909–1926

    Article  PubMed  CAS  Google Scholar 

  • Spector MS, Selinger JV, Singh A et al (1998) Controlling the morphology of chiral lipid tubules. Langmuir 14:3493–3500

    Article  CAS  Google Scholar 

  • Syte S, Kumon Y, Ishigaki A (1998) Immobilization of glucose oxidase on poly-(L-lysine)-modified polycarbonate membrane. Biotechnol Appl Biochem 27:245–248

    Google Scholar 

  • Tian Y, He Q, Cui Y et al (2006) Fabrication of protein nanotubes based on layer-by-layer assembly. Biomacromolecules 7:2539–2542

    Article  PubMed  CAS  Google Scholar 

  • Win KY, Feng SS (2005) Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26:2713–2722

    Article  PubMed  CAS  Google Scholar 

  • Xu ZP, Zeng QH, Lu GQ et al (2006) Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61:1027–1040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Nanotechnology Infrastructure Network/Center for Nanostructured Systems at Harvard University for use of their nanofabrication and microscopy facilities. This work is supported in part by the Research Advancement Program of Worcester Polytechnic Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyu Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dougherty, S.A., Liang, J. & Kowalik, T.F. Template-assisted fabrication of protein nanocapsules. J Nanopart Res 11, 385–394 (2009). https://doi.org/10.1007/s11051-008-9387-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9387-y

Keywords

Navigation