Skip to main content
Log in

Electrochemical characterization of core@shell CoFe2O4/Au composite

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this paper, we address the synthesis and characterization of the core@shell composite magneto-plasmonic cobalt ferrite–gold (Co-ferrite/Au) nanosystem. The synthesis Co-ferrite/Au nanocomposite is not obvious, hence it was of interest to generate it in a simple straightforward method. Co-ferrite/Au nanocomposite was generated by synthesizing first by thermal decomposition Co-ferrite nanoparticles (NPs). On a second step, ionic gold (Au3+) was reduced at the surface of Co-ferrite NPs by ultrasound, to obtain the metallic Au shell. The characterization of the nanomaterial was achieved by microscopy, spectroscopy, and performing magnetic measurements. However, what is attractive about our work is the use of electrochemical techniques as analytical tools. The key technique was cyclic voltammetry, which provided information about the nature and structure of the nanocomposite, allowing us to confirm the core@shell structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

NP:

Nanoparticle

kHz:

Kilohertz

DMSA:

Dimercaptosuccinic acid

DMSO:

Dimethyl sulfoxide

ICP-EOS:

Inductively coupled plasma optical emission spectrometry

TEM:

Transmission electron microscopy

FT-IR:

Fourier transformed infrared

XRD:

X-ray diffraction

UV/vis:

Ultraviolet–visible

SQUID:

Superconducting quantum interference device

kOe:

Kilo-oersted

H :

Magnetic field strength

GPE:

Graphite paste electrode

CV:

Cyclic voltammetry

SCE:

Saturated calomel electrode

SPR:

Surface plasmon resonance

λ :

Wavelength

CVs:

Cyclic voltammograms

emu:

Electromagnetic units

erg:

Erg

H c :

Coercivity

M r :

Remanent magnetization

M s :

Saturation magnetization

M r/M s :

Squareness ratio

r :

Mass density

vs:

Against

References

  • Ahmed MA, Okasha N et al (2010) Influence of Co content on the characterization and magnetic properties of magnetite. Ceram Int 36:1529–1533

    Article  CAS  Google Scholar 

  • Antoshina LG, Goryaga AN et al (2003) Magnetic anisotropy in ferrites-spinels with frustrated magnetic structure. J Magn Magn Mater 258–259:516

    Article  Google Scholar 

  • Bao N, Shen L et al (2009) Formation mechanism and shape control of monodisperse magnetic CoFe2O4 nanocrystals. Chem Mater 21(14):3458–3497

    Article  CAS  Google Scholar 

  • Barrado E, Prieto F et al (1999) Chemical and electrochemical characterization of lead ferrites produced in the purification of lead-bearing wastewater. Electrochim Acta 45:1105–1111

    Article  CAS  Google Scholar 

  • Barrado E, Prieto F et al (2001) Chemical and electrochemical characterization of cobalt bearing ferrites originating from the purification of cobalt containing wastewaters. Portugaliae Electrochim Acta 19:209–219

    Article  CAS  Google Scholar 

  • Berchmans LJ, Karthikeyan R et al (2011) Mechanochemical synthesis and electrochemical characterization of nano crystalline calcium ferrite. Catal Lett 141:1451–1457

    Article  CAS  Google Scholar 

  • Beverskog B, Puigdomenech I (1996) Revised pourbaix diagrams for iron at 25–300°C. Corros Sci 38(12):2121–2135

    Article  CAS  Google Scholar 

  • Brullot W, Valev VK et al (2012) Magnetic-plasmonic nanoparticles for the life sciences: calculated optical properties of hybrid structures. Nanomedicine 8:559–568

    Article  CAS  Google Scholar 

  • Calero-DdelC VL, Rinaldi C (2007) Synthesis and magnetic characterization of cobalt-substituted ferrite (Co x Fe3−x O4) nanoparticles. J Magn Magn Mater 314(1):60–67

    Article  CAS  Google Scholar 

  • Cedeño-Mattei Y, Perales-Pérez O et al (2010) Colossal room-temperature coercivity in size-selected cobalt ferrite nanocrystals. J Appl Phys. doi:10.1063/1.3339781

  • Chakrabarti S, Mandal SK et al (2005) Cobalt doped γ-Fe2O3 nanoparticles: synthesis and magnetic properties. Nanotechnology 16:506–511

    Article  CAS  Google Scholar 

  • Chen M, Yamamuro S et al (2003) Gold-coated iron nanoparticles for biomedical applications. J Appl Phys 93(10):7551–7553

    Article  CAS  Google Scholar 

  • Crain DJ, Zheng JP et al (2013) Electrochemical examination of core–shell mediated Li+ transport in Li4Ti5O12 anodes of lithium ion batteries. Solid State Ionics 240:10–18

    Article  CAS  Google Scholar 

  • Das R, Nath SS, et al (2011) Optical properties of linoleic acid protected gold nanoparticles. J Nanomater. doi:10.1155/2011/630834

  • Di-Guglielmo C, Ramos-López D et al (2010) Embryotoxicity of cobalt ferrite and gold nanoparticles: a first in vitro approach. Reprod Toxicol 30:271–276

    Article  CAS  Google Scholar 

  • Ding Y, Yang Y et al (2011) High capacity ZnFe2O4 anode material for lithium ion batteries. Electrochim Acta 56:9433–9438

    Article  CAS  Google Scholar 

  • Fan X-a, Guan J et al (2010) Low-temperature synthesis, magnetic and microwave electromagnetic properties of substoichiometric spinel Co ferrite octahedra. Eur J Inorg Chem 2010:419–426

    Article  Google Scholar 

  • Fantechi E, Campo G et al (2012) Exploring the effect of Co doping in fine maghemite nanoparticles. J Phys Chem C 116:8261–8270

    Article  CAS  Google Scholar 

  • Gallo J, García I et al (2010) Water-soluble magnetic glyconanoparticles based on metal-doped ferrites coated with gold: synthesis and characterization. J Mater Chem 20:10010–10020

    Article  CAS  Google Scholar 

  • Gaur JN, Schmid GM (1970) Electrochemical behavior of gold in acidic chloride solutions. J Electroanal Chem Interface Electrochem 24:279–286

    CAS  Google Scholar 

  • Goon IY, Lai LMH et al (2009) Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: systematic control using polyethyleneimine. Chem Mater 21:673–681

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  • Gyergyek S, Makovec D et al (2010) Influence of synthesis method on structural and magnetic properties of Co ferrite NPs. J Nanopart Res 12:1263–1273

    Article  CAS  Google Scholar 

  • Han YC, Cha HG et al (2007) Synthesis of highly magnetized iron NPs by a solventless thermal decomposition method. J Phys Chem C 111:6275–6280

    Article  CAS  Google Scholar 

  • Heli H, Sattarahmady N et al (2012) A study of the charge propagation in nanoparticles of Fe2O3 core–cobalt hexacyanoferrate shell by chronoamperometry and electrochemical impedance spectroscopy. J Solid State Electrochem 16:53–64

    Article  CAS  Google Scholar 

  • Herrera-Gallego J, Castellano CE et al (1975) The electrochemistry of gold in acid aqueous solutions containing chloride ions. J Electroanal Chem Interface Electrochem 66:207–230

    Article  CAS  Google Scholar 

  • Hyeon T, Kim J-Y, et al (2007) Use of core–shell gold nanoparticle which contains magnetic nanoparticles for MRI T2 contrast agent, cancer diagnostic and therapy. S N U I Foundation Korea, PCT/KR2007/005154

  • Iwamoto M, Kuroda K et al (2003) Production of gold nanoparticles-polymer composite by quite simple method. Eur Phys J D 24:365–367

    Article  CAS  Google Scholar 

  • Jain PK, Xiao Y et al (2009) Surface plasmon resonance enhanced magneto-optics (SuPREMO): faraday rotation enhancement in gold-coated iron oxide nanocrystals. Nano Letters 9:1644–1650

    Article  CAS  Google Scholar 

  • Jana NR, Chen Y et al (2004) Size- and shape-controlled magnetic (Cr, Mn, Fe, Co., Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16:3931–3935

    Article  CAS  Google Scholar 

  • Joshi M, Bhattacharyya A et al (2008) Characterization techniques for nanotechnology applications in textiles. Indian J Fibre Text Res 33:304–317

    CAS  Google Scholar 

  • Khosroshahi ME, Nourbakhsh MS (2010) Preparation and characterization of self assembled gold nanoparticles on amino functionalized SiO2 dielectric core. World Acad Sci Eng Technol 64:353–356

    Google Scholar 

  • Kim H, Achermann M et al (2005) Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals. J Am Chem Soc 127:544–546

    Article  CAS  Google Scholar 

  • Kishimoto M, Sueyoshi T et al (1979) Coercivity of γ-Fe2O3 particles growing iron–cobalt ferrite. J Appl Phys 50:450–452

    Article  CAS  Google Scholar 

  • Kounaves SP (1997) Voltammetric techniques. In: Settle FA (ed) Handbook of instrumental techniques for analytical chemistry, 1st edn. Prentice Hall, Upper Saddle River, pp 709–725

  • Krishna R, Titus E et al (2012) Fabrication of a glucose biosensor based on citric acid assisted cobalt ferrite magnetic nanoparticles. J Nanosci Nanotechnol 12:6631–6638

    Article  CAS  Google Scholar 

  • Kwon SG, Hyeon T (2008) Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc Chem Res 41:1696–1709

    Article  CAS  Google Scholar 

  • Laouini E, Douch J et al (2011) Cathodic behaviour of CoFe2O4 spinel electrodes in alkaline medium. J Appl Electrochem 41:731–740

    Article  CAS  Google Scholar 

  • Levin CS, Hofmann C et al (2009) Magnetic-plasmonic core–shell nanoparticles. ACS Nano 3:1379–1388

    Article  CAS  Google Scholar 

  • Liang Z, Wu X et al (2012) A facile approach to fabricate water-soluble Au–Fe3O4 nanoparticle for liver cancer cells imaging. Chin J Chem 30:1387–1392

    Article  CAS  Google Scholar 

  • Lide DR (2003) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  • Lin J, Zhou W et al (2001) Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J Solid State Chem 159:26–31

    Article  CAS  Google Scholar 

  • Liu B, Li Q et al (2011) Synthesis of patterned nanogold and mesoporous CoFe2O4 nanoparticle assemblies and their application in clinical immunoassays. Nanoscale 3:2220–2226

    Article  CAS  Google Scholar 

  • Lorenzo L, Encinas P et al (1997) Electrochemical study of manganese and iron compounds at carbon paste electrodes with electrolytic binder application to the characterization of manganese ferrite. J Solid State Electrochem 1:232–240

    Article  CAS  Google Scholar 

  • Lyon JL, Fleming DA et al (2004) Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Letters 4:719–723

    Article  CAS  Google Scholar 

  • Maaz K, Mumtaz A et al (2006) Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) NPs prepared by wet chemical route. J Magn Magn Mater 308:289–295

    Article  Google Scholar 

  • Moores A, Goettmann F (2006) The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J Chem 30:1121–1132

    Article  CAS  Google Scholar 

  • Naseri MG, Saion EB et al (2010) Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method. J Nanomater 2010:8

    Google Scholar 

  • Ngo AT, Bonville P et al (2001) Spin canting and size effects in nanoparticles of nonstoichiometric cobalt ferrite. J Appl Phys 89:3370–3376

    Article  CAS  Google Scholar 

  • Okitsu K, Yue A et al (2001) Formation of colloidal gold nanoparticles in an ultrasonic field: control of rate of gold(III) reduction and size of formed gold particles. Langmuir 17:7717–7720

    Article  CAS  Google Scholar 

  • Okitsu K, Ashokkumar M et al (2005) Sonochemical synthesis of gold nanoparticles: effects of ultrasound frequency. J Phys Chem B 109:20673–20675

    Article  CAS  Google Scholar 

  • Park J, An K et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Article  CAS  Google Scholar 

  • Park J, Joo J et al (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660

    Article  CAS  Google Scholar 

  • Peddis D, Cannas C et al (2010) Spin-glass-like freezing and enhanced magnetization in ultra small CoFe2O4 nanoparticles. Nanotechnology. doi:10.1088/0957-4484/21/12/125705

  • Peddis D, Yaacoub N et al (2011) Cationic distribution and spin canting in CoFe2O4 nanoparticles. J Phys. doi:10.1016/j.addr.2009.03.007

  • Pellegrino T, Fiore A et al (2006) Heterodimers based on CoPt3–Au nanocrystals with tunable domain size. J Am Chem Soc 128:6690–6698

    Article  CAS  Google Scholar 

  • Pita M, Abad JM et al (2008) Synthesis of cobalt ferrite core/metallic shell nanoparticles for the development of a specific PNA/DNA biosensor. J Colloid Interface Sci 321:484–492

    Article  CAS  Google Scholar 

  • Pradhan A, Jones RC et al (2008) Gold-magnetite nanocomposite materials formed via sonochemical methods. Ultrason Sonochem 15(5):891–897

    Article  CAS  Google Scholar 

  • Quaresma P, Franco R et al (2008) Sonochemical formation of gold nuclei on magnetite nanoparticles and growth to a core–shell system. NanoSpain, Bilbao

    Google Scholar 

  • Rao CN, Biswas K (2009) Characterization of nanomaterials by physical methods. Annu Rev Anal Chem 2:435–462

    Article  CAS  Google Scholar 

  • Robinson I, Tung LD et al (2010) Synthesis of core–shell gold coated magnetic nanoparticles and their interaction with thiolated DNA. Nanoscale 2:2624–2630

    Article  CAS  Google Scholar 

  • Roca AG, Costo R et al (2009) Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J Phys D 42:224002–224012

    Article  Google Scholar 

  • Sangmanee M, Maensiri S (2009) Nanostructures and magnetic properties of cobalt ferrite (CoFe2O4) fabricated by electrospinning. Appl Phys A 97:167–177

    Article  CAS  Google Scholar 

  • Seino S, Kusunose T et al (2006) Synthesis of gold/magnetic iron oxide composite nanoparticles for biomedical applications with good dispersibility. J Appl Phys. doi:10.1016/j.addr.2009.03.007

    Google Scholar 

  • Shang K, Zhu J et al (2012) Multifunctional Fe3O4 core/Ni–Al layered double hydroxides shell nanospheres as labels for ultrasensitive electrochemical immunoassay of subgroup J of avian leukosis virus. Biosens Bioelectron 37:107–111

    Article  CAS  Google Scholar 

  • Shubayev VI, Pisanic TR 2 et al (2009) Magnetic nanoparticles for therognostics. Adv Drug Deliv Rev 61:467–488

    Article  CAS  Google Scholar 

  • Singh JP, Singh NK et al (1999) Electrocatalytic activity of metal-substituted Fe3O4 obtained at low temperature for O2 evolution. Int J Hydrogen Energy 24(5):433–439

    Article  CAS  Google Scholar 

  • Slonczewski JC (1958) Origin of magnetic anisotropy in cobalt-substituted magnetite. Phys Rev 110:1341–1348

    Article  CAS  Google Scholar 

  • Tachiki M (1960) Origin of the magnetic anisotropy energy of cobalt ferrite. Prog Theor Phys 23:1055–1072

    Article  CAS  Google Scholar 

  • Tannous C, Gieraltowski J (2008) The Stoner–Wohlfarth model of ferromagnetism. Eur J Phys 29:475–487

    Article  CAS  Google Scholar 

  • Teo BM, Chen F et al (2009) Novel one-pot synthesis of magnetite latex nanoparticles by ultrasound irradiation. Langmuir 25:2593–2595

    Article  CAS  Google Scholar 

  • Tirosh E, Shemer G et al (2006) Optimizing cobalt ferrite nanocrystal synthesis using a magneto-optical probe. Chem Mater 18:465–470

    Article  CAS  Google Scholar 

  • Toderas F, Baia M et al (2008) Tuning the plasmon resonances of gold nanoparticles by controlling the IR size and shape. J Optoelectron Adv Mater 10:2282–2284

    CAS  Google Scholar 

  • Tremiliosi-Filho G, Dall’Antonia LH et al (2005) Growth of surface oxides on gold electrodes under well-defined potential, time and temperature conditions. J Electroanal Chem 578:1–8

    Article  CAS  Google Scholar 

  • Ullate SP, Martin IG et al (2011) Gold-coated magnetic glyconanoparticles functionalized with proteins for use as diagnostic and therapeutic agents. Asociación Centro de Investigación Cooperativa en Biomateriales—CIC Biomagune, Spain PCT/W02011036191

  • Usov NA, Peschany SE (1995) Theoretical hysteresis loops for single-domain particles with cubic anisotropy. J Magn Magn Mater 174:247–260

    Article  Google Scholar 

  • Vega-Rios A, Hernández-Escobar CA et al (2013) Electrical and electrochemical properties of polystyrene/polyaniline core–shell materials prepared with the use of a reactive surfactant as the polyaniline shell precursor. Synth Metals 167:64–71

    Article  CAS  Google Scholar 

  • Vestal CR, Song Q et al (2004) Effects of interparticle interactions upon the magnetic properties of CoFe2O4 and MnFe2O4 nanocrystals. J Phys Chem B 108:18222–18227

    Article  CAS  Google Scholar 

  • Vijayakumar R, Koltypin Y et al (2000) Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater Sci Eng A 286:101–105

    Article  Google Scholar 

  • Wang L, Luo J et al (2005) Monodispersed core–shell Fe3O4@Au nanoparticles. J Phys Chem B 109:21593–21601

    Article  CAS  Google Scholar 

  • Wang CY, Hong JM et al (2010) Facile method to synthesize oleic acid-capped magnetite nanoparticles. Chin Chem Lett 21:179–182

    Article  CAS  Google Scholar 

  • Wilcoxon JP, Martin JE et al (2000) Size distributions of gold nanoclusters studied by liquid chromatography. Langmuir 16:9912–9920

    Article  CAS  Google Scholar 

  • Woods R (1988) Electroanalytical chemistry: a series of advances. M. Dekker, New York

    Google Scholar 

  • Xie J, Peng S et al (2006) One-pot synthesis of monodisperse iron oxide NPs for potential biomedical applications. Pure Appl Chem 78:1003–1014

    Article  CAS  Google Scholar 

  • Xu Z, Hou Y et al (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129:8698–8699

    Article  CAS  Google Scholar 

  • Yang W, Zhou X et al (2011) Electrochemical biosensors utilizing the electron transfer of hemoglobin immobilized on cobalt-substituted ferrite nanoparticles–chitosan film. Electrochim Acta 56:6588–6592

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding support from the European commission U (NMP3-SL-2008-214107-Nanomagma) and Fondazione Cariplo through the Project No. 2010–0612 “Chemical synthesis and characterization of magneto-plasmonic nano-heterostructures”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourdes I. Cabrera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 229 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlà, F., Campo, G., Sangregorio, C. et al. Electrochemical characterization of core@shell CoFe2O4/Au composite. J Nanopart Res 15, 1813 (2013). https://doi.org/10.1007/s11051-013-1813-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1813-0

Keywords

Navigation