Skip to main content
Log in

Magnetite-Silver Core–Shell Nanoparticles: Synthesis, Characterizes, and Optical Properties

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Fe3O4 and Fe3O4/Ag core–shell nanocomposite powders were synthesized via the co-precipitation method. The structure, microstructure, magnetic, and optical properties of Fe3O4/Ag and Fe3O4 were studied. XRD patterns and UV–Vis spectra showed that nanostructure Fe3O4 and Fe3O4/Ag particles were successfully synthesized. AFM and MFM mode micrographs of Fe3O4 and Fe3O4/Ag powders confirm the formation of Fe3O4 particles in the nano-scale range. Both Fe3O4 and Fe3O4/Ag composite powders represented the superparamagnetic behavior due to the formation of nanosized Fe3O4 particles. Furthermore, in-situ synthesis of Ag on the surface of magnetite nanoparticles increased the particle size, resulting in a decrease in saturation magnetization. Moreover, based on the Maxwell-Garnet effective medium theory, a theoretical model was developed to determine the optical properties of suspended core–shell nanoparticles. A very good agreement was found between the theoretical and experimental results. In addition, the local electric field in the particles, evaluated using the numerical finite element method, showed that the electric field in the magnetite core might be amplified up to 20 times at the symmetrical SPR wavelength mode, depending on the silver shell thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Palpant B (2012) in Gold nanoparticles for physics, biology and chemistry, edited by Louis C and Pluchery O. (Imperial College Press, London, 2012), pp. 75–102. https://doi.org/10.1002/anie.201309807

  2. Parisa K, Huyeh MR (2021). IJOP. https://doi.org/10.52547/ijop.15.1.41

  3. Lesniak W, Bielinska AU, Sun K, Janczak KW, Shi X, Baker JR, Balogh LP (2005). Nano Lett. https://doi.org/10.1021/nl051077u

    Article  PubMed  Google Scholar 

  4. Liu CH, Zhou ZD, Yu X, Lv BQ, Mao JF, Xiao D (2005). AnalChem. https://doi.org/10.1134/S002016850803014X

    Article  Google Scholar 

  5. Li K, Zhengtao Xu, Hanhui Xu, Carroll PJ, Fettinger JC (2006). Inorg Chem. https://doi.org/10.1021/ic051135e

    Article  PubMed  PubMed Central  Google Scholar 

  6. Endo T, Yomokazu T, Esumi K (2005). J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2005.01.057

    Article  PubMed  Google Scholar 

  7. Tan LL, Wei M, Shang L, Yang YW (2021). Adv Funct Mater. https://doi.org/10.1002/adfm.202007277

    Article  Google Scholar 

  8. Yang X, Yang M, Pang Bo, Vara M, Xia Y (2015). Chem Rev. https://doi.org/10.1021/acs.chemrev.5b00193

    Article  PubMed  Google Scholar 

  9. Arturo M, Lopez Q, Jose R (1993) J Colloid Interface Sci. https://doi.org/10.1006/jcis.1993.1277

  10. Chiang CL, Sung CS (2006). J Magn Magn Mater. https://doi.org/10.1016/j.jmmm.2005.08.022

    Article  Google Scholar 

  11. Aoshima K, Wang SX (2003). J Appl Phys. https://doi.org/10.1063/1.1558633

    Article  Google Scholar 

  12. Morton SA, Waddill GD, Kim SI, Schuller K, Chambers SA, Tobin JG (2002) Surf Sci. https://doi.org/10.1016/s0039-6028(02)01824-1

  13. Shebanova ON, Lazor P (2003) J Chem Phys. https://doi.org/10.1063/1.1602072

  14. Schrupp D, Sing M, Tsunekawa M, Fujiwara H, Kasai S, Sekiyama A, Suga S, Muro T, Brabers VAM, Claessen R (2005). Europhys Lett. https://doi.org/10.1209/epl/i2005-10045-y

    Article  Google Scholar 

  15. Huang ZB, Tang FQ (2004) Preparation, structure, and magnetic properties of polystyrene coated by Fe3O4 nanoparticles. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2003.12.065

    Article  PubMed  Google Scholar 

  16. Cui YL, Hu DD, Fang Y, Ma JB (2001) Sci China Ser B. https://doi.org/10.1007/BF02879815

  17. Shimizu T, Kitayama Y, Kodama T (2001). Energy fuels. https://doi.org/10.1021/ef000200w

    Article  Google Scholar 

  18. León Félix L, Coaquira JA, Martínez MA, Goya GF, Mantilla J, Sousa MH, Valladares LL, Barnes CH, Morais PC (2017) Scientific reports. https://doi.org/10.1038/srep41732

  19. Salehizadeh H, Hekmatian E, Sadeghi M, Kennedy K (2012). J Nanobiotechnol. https://doi.org/10.1186/1477-3155-10-3

    Article  Google Scholar 

  20. Brullot W, Valev VK, Verbiest T (2012) Nanomedicine: NBM. https://doi.org/10.1016/j.nano.2011.09.004

  21. Wang G, Li F, Li L, Zhao J, Ruan X, Ding W, Cai J, Ang Lu, Pe Y (2020). ACS Omega. https://doi.org/10.1021/acsomega.0c00437

    Article  PubMed  PubMed Central  Google Scholar 

  22. Khedkar CV, Khupse ND, Thombare BR, Dusane PR, Lole G, Devan RS, Deshpande AS, Patil SI (2020). Chem Phys Lett. https://doi.org/10.1016/j.cplett.2020.137131

    Article  Google Scholar 

  23. Jiang W, Zhou Y, Zhang Y, Xuan S, Gong X (2012). Dalton Trans. https://doi.org/10.1039/C2DT12307J

    Article  PubMed  Google Scholar 

  24. Chen Q, Wang H, Wang Q, Pan Y (2018) J Plasmonics. https://doi.org/10.1051/e3sconf/201911801002

  25. Amarjargal A, Tijing LD, Ik-Tae I, Kim CS (2013) Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2013.04.054

  26. Benvidi A, Jahanbani S (2016) J Electroanalytic Chem. https://doi.org/10.1016/j.jelechem.2016.02.038

  27. Liu CH, Zhou ZD, Xiao D (2008) Inorganic materials. https://doi.org/10.1134/S002016850803014X

  28. Ghazanfari M, Johar F, Yazdani A (2014) Journal of ultrafine grained and nanostructured materials. https://doi.org/10.7508/jufgnsm.2014.02.006

  29. Bankole OM, Nyokong T (2016). New J Chem. https://doi.org/10.1039/C6NJ01511E

    Article  Google Scholar 

  30. Shan Y, Yang Y, Caoab Y, Huang Z (2015). RSC Adv. https://doi.org/10.1039/C5RA17606A

    Article  Google Scholar 

  31. Gai K, Qi H, Zhu X, Wan M (2019) E3S Web Conf. https://doi.org/10.1051/e3sconf/201911801002

  32. Pan L, Tang J, Chen Y (2013). Sci China Chem. https://doi.org/10.1007/s11426-012-4763-y

    Article  Google Scholar 

  33. Amarjargal A, Tijing LD, Cheol I-T, Kim S (2013). Chem Eng J. https://doi.org/10.1016/j.cej.2013.04.054

    Article  Google Scholar 

  34. Khalil MI (2015). Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.02.008

    Article  Google Scholar 

  35. Wang G, Li F, Li L, Zhao J, Ruan X, Ding W, Cai J, Ang Lu, Pei Y (2020). ACS Omega. https://doi.org/10.1021/acsomega.0c00437

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fajaroh F (2017) IOP Conf. Ser.: Mater Sci Eng. https://doi.org/10.1088/1757-899X/202/1/012064

  37. Ianoș R, Tăculescu A, Păcurariu C, Lazău I (2012) J Am Ceram Soc. https://doi.org/10.1111/j.1551-2916.2012.05159.x

  38. Tahmasebi E, Yamini Y (2012) Anal Chim Acta. https://doi.org/10.1016/j.aca.2012.10.040

  39. Patsula V, Kosinová L, Lovrić M, Ferhatovic Hamzić L, Rabyk M, Konefal R, Paruzel A, Šlouf M, Herynek V, Gajović S, Horák D (2016) ACS Appl Mater & Interf. https://doi.org/10.1021/acsami.5b12720

  40. Villegas VRA, Isaías De León Ramírez J, Hernandez Guevara E, Sicairos SP, Hurtado Ayala LA, Sanchez BL (2020) J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2019.12.004

  41. Hashemi Zadeh S, Rashidi-Huyeh M, Palpant B (2017) J Appl Phys. https://doi.org/10.1063/1.4997276

  42. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) Science. https://doi.org/10.1126/science.1089171

  43. Prodan E, Nordlande P (2004). J Chem Phys. https://doi.org/10.1063/1.1647518

    Article  PubMed  Google Scholar 

  44. Voshchinnikov NV, Mathis JS (1999) Astrophys J 526:257–264

    Article  Google Scholar 

  45. Levin CS, Hofmann C, Ali TA, Kelly AT, Morosan E, Nordlander P, Whitmire KH, Halas NJ (2009) ACS Nano. https://doi.org/10.1021/nn900118a

Download references

Acknowledgements

The authors would like to thank Mohammad Azari Nadjaf Abad from the Karlsruhe Institute of Technology and Anh Van Le from the University of Tuebingen for their scientific comments.

Funding

This work was supported by the University of Sistan and Baluchestan, Iran. The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Majid Rashidi Huyeh, Saeideh Balouchzahi, Mahdi Shafiee Afarani, and Parisa Khajegi. The first draft of the manuscript was written by Majid Rashidi Huyeh and Mahdi Shafiee Afarani, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Majid Rashidi Huyeh.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashidi Huyeh, M., Balouchzehi, S., Shafiee Afarani, M. et al. Magnetite-Silver Core–Shell Nanoparticles: Synthesis, Characterizes, and Optical Properties. Plasmonics 17, 2385–2390 (2022). https://doi.org/10.1007/s11468-022-01725-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01725-5

Keywords

Navigation