Skip to main content
Log in

Aggregation of dipolar molecules in SiO2 hybrid organic–inorganic films: use of silver nanoparticles as inhibitors of molecular aggregation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The technological implementation of hybrid organic–inorganic materials in second order nonlinear optical photonic devices depends strongly on the ability of the host matrixes to contain high loads of dipolar molecules without aggregation. Some organic molecules are often used to diminish the attracting interactions between dipolar molecules in such kind of materials, but their efficiency as inhibitors of molecular aggregation is limited by their polarizability. In this work, we report the use of silver nanoparticles as inhibitors of molecular aggregation in hybrid organic–inorganic films doped with dipolar molecules. The large polarizability of the silver nanoparticles makes them ideal moieties for the inhibition of the electrostatic interactions between dipolar nonlinear optical molecules. The average size of the silver nanoparticles in this work was 70.5 nm in diameter, they were synthesized using silver nitrate (AgNO3) as precursor and aminoethylaminopropyltrimethoxysilane as reducing agent. These nanoparticles were immersed in SiO2 hybrid organic–inorganic sol–gel films doped with dipolar chromophores to study their effect as inhibitors of dipolar chromophores aggregation. The presence of the silver nanoparticles in the solid films was confirmed by transmission electronic microscopy and UV–Visible spectroscopy. UV–Visible spectroscopy was also used to monitor the dipolar chromophores aggregation in the SiO2 films. We found that, at room temperature, silver nanoparticles are good inhibiting chromophores aggregation in comparison with the performance of organic inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AgNO3 :

Silver nitrate

AEAPTMS:

Aminoethylaminopropyltrimethoxysilane

TEM:

Transmission electronic microscopy

DR1:

Disperse red 1

ENPMA:

Ethyl-[4-(4-nitrophenylazo)-phenyl]-(2-oxiranylmethoxy-ethyl)-amine

TEOS:

Tetraethoxysilane

GPTMS:

(2-Glycidyloxypropyl)trimethoxysilane

APTMS:

[3-(2-Aminoethylamino)propyl]trimethoxysilane

PhTES:

Triethoxyphenylsilane

CbOH:

9H-carbazole-9-ethanol

Ph:

Phenyl groups

TS:

Trans-stilbene

BPh:

4,4′-Bis(triethoxysilyl)-1,1′-biphenyl

MeOH:

Methanol

MeOEtOH:

Methoxyethanol

References

  • Brusatin G, Abbotto A, Beverina L, Pagani GA, Casalboni M, Sarcinelli F, Innocenzi P (2004a) Poled sol–gel materials with heterocycle push–pull chromophores that confer enhanced second-order optical nonlinearity. Adv Funct Mater 14:1160–1166. doi:10.1002/adfm.200305139

    Article  CAS  Google Scholar 

  • Brusatin G, Innocenzi P, Abbotto A, Beverina L, Pagani GA, Casalboni M, Sarcinelli F, Pizzoferrato R (2004b) Hybrid organic-inorganic materials containing poled zwitterionic push–pull chromophores. J Eur Ceram Soc 24:1853–1856. doi:10.1016/S0955-2219(03)00601-0

    Article  CAS  Google Scholar 

  • Brusatin G, Innocenzi P, Guglielmi M, Abbotto A, Beverina L, Pagani GA, Casalboni M, Sarcinelli F (2004c) Poled sol–gel materials doped with heterocycle-based push–pull chromophores with second-order optical non-linearity. J Non-Cryst Solids 345&346:575–579. doi:10.1016/j.jnoncrysol.2004.08.087

    Article  CAS  Google Scholar 

  • Chen L, Jin X, Cui Y, Qian G, Wang M (2008) Effect of triphenylamine agents as screening moieties for electrostatic interaction in the nonlinear optical response of hybrid organic-inorganic films. Thin Solid Films 516:4153–4158. doi:10.1016/j.tsf.2007.10.120

    Article  CAS  Google Scholar 

  • Choi DH, Choi KJ, Cha YK, Oh SJ (2000) Optically induced anisotropy in photoresponsive sol–gel matrix bearing a silylated disperse red 1. Bull Korean Chem Soc 21:1222–1226

    CAS  Google Scholar 

  • Dalton LR (2003) Rational design of organic electro-optic materials. J Phys Condens Mater 15:R897–R934

    Article  CAS  Google Scholar 

  • Dalton LR, Lao D, Olbricht BC, Benight S, Bale DH, Davies JA, Ewy T, Hammond SR, Sullivan PA (2010) Theory-inspired development of new nonlinear optical materials and their integration into silicon photonic circuits and devices. Opt Mater 32:658–668. doi:10.1016/j.optmat.2009.02.002

    Article  CAS  Google Scholar 

  • del Carreón-Castro MP, Gutiérrez-Nava M, Morales-Saavedra OG, Reyna-González JM, Reyna-Rivera E (2008) Optical properties and aggregation of 1-N-methylamino-4′-nitroazobenzene in various environments. Rev Mex Fis 54:229–235

    Google Scholar 

  • Delbosc N, Reynes M, Dautel OJ, Wantz G, Lère-Porte JP, Moreau JJE (2010) Control of the aggregation of a phenylenevinylenediimide chromophore by use of supramolecular chemistry: enhanced electroluminescence in supramolecular organic devices. Chem Mater 22:5258–5270. doi:10.1021/cm101343j

    Article  CAS  Google Scholar 

  • Della Giustina G, Brusatin G, Guglielmi M, Dispenza M, Fiorello AM, Varasi M, Casalboni M, Quatela A, De Matteis F, Giorgetti E, Margheri G, Innocenzi P, Abbotto A, Beverina L, Pagani GA (2006) Electro-optics poled sol–gel materials doped with heterocycle push–pull chromophores. Mater Sci Eng C 26:979–982. doi:10.1016/j.msec.2005.09.049

    Article  CAS  Google Scholar 

  • Dupree R, Smithard MA (1972) The electronic properties of small metal particles: the electric polarizability. J Phys C Solid State Phys 5:408–414

    Article  CAS  Google Scholar 

  • Franco A, Brusatin G, Guglielmi M, Stracci G, De Matteis F, Casalboni M, Detert H, Grimm B, Schrader S (2010) Second harmonic generation in SiO2 sol–gel films functionalized with ethyl-[4-(4-nitro-phenylazo)-phenyl]-(2-oxiranylmethoxy-ethyl)-amine (ENPMA) molecules. J Non-Cryst Solids 356:1689–1695. doi:10.1016/j.jnoncrysol.2010.06.018

    Article  CAS  Google Scholar 

  • Franco A, Brusatin G, Guglielmi M, Rentería V, Valverde-Aguilar G, García-Macedo JA (2011) Push–pull chromophores aggregation in SiO2 films doped with silver nanoparticles. Rev Mex Fis S57:44–50

    Google Scholar 

  • Ghosh S, Li XQ, Stepanenko V, Würthner F (2008) Control of H- and J-type pi stacking by peripheral alkyl chains and self-sorting phenomena in perylene bisimide homo- and heteroaggregates. Chem Eur J 14:11343–11357. doi:10.1002/chem.200801454

    Article  CAS  Google Scholar 

  • Giacometti JA, Fedosov S, Costa MM (1999) Corona charging of polymers: recent advances on constant current charging. Braz J Phys 29:269–279

    Article  CAS  Google Scholar 

  • Grazulevicius JV, Strohriegl P, Pielichowski J, Pielichowski K (2003) Carbazole-containing polymers: synthesis, properties and applications. Prog Polym Sci 28:1297–1353. doi:10.1016/S0079-6700(03)00036-4

    Article  CAS  Google Scholar 

  • Halterman RL, Moore JL, Mannel LM (2008) Disrupting aggregation of tethered rhodamine B dyads through inclusion in cucurbit[7]uril. J Org Chem 73:3266–3269. doi:10.1021/jo7026432

    Article  CAS  Google Scholar 

  • Israelachvili J (2002) Intermolecular and surface forces. Academic Press, San Diego

    Google Scholar 

  • Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744. doi:10.1021/jp0209289

    Article  CAS  Google Scholar 

  • Katz HD, Singer KD, Sohn JE, Dirk CW, King LA, Gordon HM (1987) Greatly enhanced second-order nonlinear optical susceptibilities in donor-acceptor organic molecules. J Am Chem Soc 109:6561–6563

    Article  CAS  Google Scholar 

  • Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677. doi:10.1021/jp026731y

    Article  CAS  Google Scholar 

  • Kim BJ, Park SY, Choi DH (2001) Effect of molecular aggregation on the photo-induced anisotropy in amorphous polymethacrylate bearing an aminonitroazobenzene moiety. Bull Korean Chem Soc 22:271–275

    CAS  Google Scholar 

  • Lebeau B, Innocenzi P (2011) Hybrid materials for optics and photonics. Chem Soc Rev 40:886–906. doi:10.1039/c0cs00106f

    Article  CAS  Google Scholar 

  • Li J, Jiang P, Wei C, Shi J (2008a) Linear and nonlinear optical properties of covalently bound CI dispersed red 1 chromophore/silica hybrid film. Dyes Pigments 78:219–224. doi:10.1016/j.dyepig.2007.12.005

    Article  CAS  Google Scholar 

  • Li J, Shi J, Zhang L, Hua Z, Jiang P, Huang W, Wei C (2008b) A pre-modification-direct synthesis route for the covalent incorporation and monomeric dispersion of hydrophobic organic chromophores in mesoporous silica films. Microporous Mesoporous Mater 111:150–156. doi:10.1016/j.micromeso.2007.07.024

    Article  CAS  Google Scholar 

  • Marino IG, Bersani D, Lottici PP (2000) Photo-induced birefringence in DR1-doped sol–gel silica and ORMOSILs thin films. Opt Mater 15:175–180

    Article  CAS  Google Scholar 

  • Marino IG, Raschellà R, Lottici PP, Bersani D, Razzetti C, Lorenzi A, Montenero A (2006) Photoinduced effects in hybrid sol–gel materials. J Sol-Gel Sci Technol 37:201–206. doi:10.1007/s10971-005-6629-7

    Article  CAS  Google Scholar 

  • Marino IG, Raschellà R, Lottici PP, Bersani D (2008) Chromophore aggregation and photoinduced dichroism in sol–gel films. J Non-Cryst Solids 354:688–692. doi:10.1016/j.jnoncrysol.2007.07.072

    Article  CAS  Google Scholar 

  • Matsuo Y, Nakajima K, Sugie Y (2009) Covalent attachment of pyrene onto the layer surfaces of silylated magadiite at a high concentration without aggregation. Chem Lett 38:1130–1131. doi:10.1246/cl.2009.1130

    Article  CAS  Google Scholar 

  • Moores A, Goettmann F (2006) The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J Chem 30:1121–1132. doi:10.1039/b604038c

    Article  CAS  Google Scholar 

  • Mortazavi MA, Knoesen A, Kowel ST, Higgins BG, Dienes A (1989) 2nd-harmonic generation and absorption studies of polymer dye films oriented by corona-onset poling at elevated-temperatures. J Opt Soc Am B 6:733–741

    Article  CAS  Google Scholar 

  • Pizzotti M, Tessore F, Biroli AO, Ugo R, De Angelis F, Fantacci S, Sgamellotti A, Zuccaccia D, Macchioni A (2009) An EFISH, theoretical, and PGSE NMR investigation on the relevant role of aggregation on the second order response in CHCl3 of the push–pull chromophores [5-[[4′-(dimethylamino)phenyl]ethynyl]-15-[(4″- nitrophenyl)ethynyl]-10,20diphenylporphyrinate] M(II) (M = Zn, Ni). J Phys Chem C 113:11131–11141. doi:10.1021/jp901919u

    Article  CAS  Google Scholar 

  • Priimagi A, Cattaneo S, Ras RHA, Valkama S, Ikkala O, Kauranen M (2005) Polymer–dye complexes: a facile method for high doping level and aggregation control of dye molecules. Chem Mater 17:5798–5802. doi:10.1021/cm051103p

    Article  CAS  Google Scholar 

  • Priimagi A, Vapaavuori J, Rodriguez FJ, Faul CFJ, Heino MT, Ikkala O, Kauranen M, Kaivola M (2008) Hydrogen-bonded polymer–azobenzene complexes: enhanced photoinduced birefringence with high temporal stability through interplay of intermolecular interactions. Chem Mater 20:6358–6363. doi:10.1021/cm800908m

    Article  CAS  Google Scholar 

  • Priimagi A, Kaivola M, Virkki M, Rodríguez FJ, Kauranen M (2010) Suppression of chromophore aggregation in amorphous polymeric materials: towards more efficient photoresponsive behavior. J Nonlinear Opt Phys 19:57–73. doi:10.1142/S0218863510005091

    Article  CAS  Google Scholar 

  • Qiu F, Yang D, Zhang Q, Cao G (2010) Aggregation, isomerization and thermo-optic property of azobenzene polyelectrolyte. Adv Mater Res 123–125:851–854. doi:10.4028/www.scientific.net/AMR.123-125.851

    Article  Google Scholar 

  • Rau I, Kajzar F (2008) New insights into the relaxation of polar order in electro-optic polymers. Thin Solid Films 516:8880–8886. doi:10.1016/j.tsf.2007.11.061

    Article  CAS  Google Scholar 

  • Rau I, Armatys P, Chollet PA, Kajzar F, Bretonnière Y, Andraud C (2007) Aggregation: a new mechanism of relaxation of polar order in electro-optic polymers. Chem Phys Lett 442:329–333. doi:10.1016/j.cplett.2007.05.058

    Article  CAS  Google Scholar 

  • Renteria VM, García-Macedo J (2005) Modeling of optical absorption of silver prolate nanoparticles embedded in sol–gel glasses. Mater Chem Phys 91:88–93. doi:10.1016/j.matchemphys.2004.10.053

    Article  CAS  Google Scholar 

  • Reyes-Esqueda JA, Darracq B, García-Macedo J, Canva M, Blanchard-Desce M, Chaput F, Lahlil K, Boilot JP, Brun A, Lévy Y (2001) Effect of chromophore–chromophore electrostatic interactions in the NLO response of functionalized organic–inorganic sol–gel materials. Opt Commun 198:207–215

    Article  CAS  Google Scholar 

  • Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25:13840–13851. doi:10.1021/la9019475

    Article  CAS  Google Scholar 

  • Singer KD, Kuzyk MG, Sohn JE (1987) 2nd-order nonlinear-optical processes in orientationally ordered materials—relationship between molecular and macroscopic properties. J Opt Soc Am B 4:968–976

    Article  CAS  Google Scholar 

  • Strässler S, Rice MJ, Wyder P (1972) Comment on Gorkov and Eliashberg’s result for the polarizability of a minute metallic particle. Phys Rev B 6:2575–2577

    Article  Google Scholar 

  • Walters G, Parkin IP (2009) The incorporation of nobel metal nanoparticles into host matrix thin films: synthesis, characterisation and applications. J Mater Chem 19:574–590. doi:10.1039/b809646e

    Article  CAS  Google Scholar 

  • Zhang HX, Lu D, Fallahi M (2006) Nonlinear optical and electro-optic properties of hybrid sol–gels doped with organic chromophores. Opt Mater 28:992–999. doi:10.1016/j.optmat.2005.05.016

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank to Diego Quiterio for the preparation of samples for TEM studies and to Roberto Hernández-Reyes for TEM technical assistance. The authors also thank to CONACYT 79781, NSF-CONACYT, PUNTA, RedNyN, PAPIIT IN107510, FIRB Italian project RBNE033KMA “Molecular compounds and hybrid nanostructured material with resonant and non-resonant optical properties for photonic devices” and UNAM-UNIPD agreement for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Franco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franco, A., García-Macedo, J., Brusatin, G. et al. Aggregation of dipolar molecules in SiO2 hybrid organic–inorganic films: use of silver nanoparticles as inhibitors of molecular aggregation. J Nanopart Res 15, 1546 (2013). https://doi.org/10.1007/s11051-013-1546-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1546-0

Keywords

Navigation