Skip to main content
Log in

Facile synthesis of porous-carbon/LiFePO4 nanocomposites

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Porous-carbon/LiFePO4 nanocomposites were synthesized by a simple one-step sol–gel process without a pore-forming agent or ball-milling processes. These nanocomposites retained a specific capacity of 96 mAh g−1 even at a rate as high as 5 C (1 C = 170 mA g−1). Smaller grain size and larger BET surface area induced by the increased carbon matrix do not insure the enhanced electrochemical properties. The optimum carbon content for the highest electrochemical properties is correlated well with the charge-transfer resistance and apparent Li+ diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bard AJ, Faulkner LR (1980) Electrochemical methods. Wiley, New York, pp 227–247

    Google Scholar 

  • Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128

    Article  CAS  Google Scholar 

  • Croce F, Epifanio AD, Hassoun J, Deptula A, Olczac T, Scrosati B (2002) A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochem Solid-State Lett 5:A47–A50

    Article  CAS  Google Scholar 

  • Delacourt C, Poizot P, Tarascon JM, Masquelier C (2005) The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1. Nat Mater 4:254–260

    Article  CAS  Google Scholar 

  • Doherty CM, Caruso RA, Smarsly BM, Adelhelm P, Drummond CJ (2009) Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries. Chem Mater 21:5300–5306

    Article  CAS  Google Scholar 

  • Dokko K, Mohamedi M, Umeda M, Uchida I (2003) Kinetic study of Li-ion extraction and insertion at LiMn2O4 single particle electrodes using potential step and impedance methods. J Electrochem Soc 150:A425–A429

    Article  CAS  Google Scholar 

  • Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnic J (2005) Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. J Electrochem Soc 152:A607–A610

    Article  CAS  Google Scholar 

  • Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Goupil JM, Pejovnik S, Jamnic J (2006) Porous olivine composites synthesized by sol-gel technique. J Power Sources 153:274–280

    Article  CAS  Google Scholar 

  • Dominko R, Bele M, Goupil JM, Gaberscek M, Hanzel D, Arcon I, Jamnik J (2007) Wired porous cathode materials: a novel concept for synthesis of LiFePO4. Chem Mater 19:2960–2969

    Article  CAS  Google Scholar 

  • Gaberscek M, Dominko R, Bele M, Remskar M, Hanzel D, Jamnik J (2005) Porous, carbon-decorated LiFePO4 prepared by sol–gel method based on citric acid. Solid State Ionics 176:1801–1805

    Article  CAS  Google Scholar 

  • Hong S, Nugroho A, Kim S, Kim J, Chung K, Cho B, Kang J (2011) Continuous supercritical hydrothermal synthesis: lithium secondary ion battery applications. Res Chem Intermed 37:429–440

    Article  CAS  Google Scholar 

  • Hsu KF, Tsay SY, Hwang BJ (2004) Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol–gel route. J Mater Chem 14:2690–2695

    Article  CAS  Google Scholar 

  • Hu YS, Guo YG, Dominko R, Gaberscek M, Jamnik J, Maier J (2007) Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Adv Mater 19:1963–1966

    Article  CAS  Google Scholar 

  • Huang H, Yin SC, Nazar LF (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid-State Lett 4:A170–A172

    Article  CAS  Google Scholar 

  • Huang B, Zheng X, Fan X, Song G, Lu M (2011) Enhanced rate performance of nano-micro structured LiFePO4/C by improved process for high-power Li-ion batteries. Electrochim Acta 56:4865–4868

    Article  CAS  Google Scholar 

  • Jung DR, Son D, Kim J, Kim C, Park B (2008) Highly luminescent surface-passivated ZnS:Mn nanoparticles by a simple one-step synthesis. Appl Phys Lett 93:163118

    Article  Google Scholar 

  • Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193

    Article  CAS  Google Scholar 

  • Kim T, Oh J, Park B, Hong KS (2000) Correlation between strain and dielectric properties in ZrTiO4 thin films. Appl Phys Lett 76:3043–3045

    Article  CAS  Google Scholar 

  • Kim C, Noh M, Choi M, Cho J, Park B (2005) Critical size of a nano SnO2 electrode for Li-secondary battery. Chem Mater 17:3297–3301

    Article  CAS  Google Scholar 

  • Kobayashi G, Nishimura SI, Park MS, Kanno R, Yashima M, Ida T, Yamada A (2009) Isolation of solid solution phases in size-controlled LixFePO4 at room temperature. Adv Funct Mater 19:395–403

    Article  CAS  Google Scholar 

  • Levi MD, Aurbach D (1999) Frumkin intercalation isotherm—a tool for the description of lithium insertion into host materials: a review. Electrochim Acta 45:167–185

    Article  CAS  Google Scholar 

  • Levi MD, Aurbach D, Maier J (2008) Electrochemically driven first-order phase transitions caused by elastic responses of ion-insertion electrodes under external kinetic control. J Electroanal Chem 624:251–261

    Article  CAS  Google Scholar 

  • Liu G, Liu Y, Wang Z, Liao X, Wu S, Zhang W, Jia M (2008) Direct synthesis of porous carbon via carbonizing precursors of aluminum phosphate containing citric acid. Micro Meso Mater 116:439–444

    Article  CAS  Google Scholar 

  • Lou X, Zhang Y (2011) Synthesis of LiFePO4/C cathode materials with both high-rate capability and high tap density for lithium-ion batteries. J Mater Chem 21:4156–4160

    Article  CAS  Google Scholar 

  • Mohamedi M, Takahashi D, Itoh T, Uchida I (2002) Electrochemical stability of thin film LiMn2O4 cathode in organic electrolyte solutions with different compositions at 55 °C. Electrochim Acta 47:3483–3489

    Article  CAS  Google Scholar 

  • Moon T, Kim C, Hwang ST, Park B (2006) Electrochemical properties of disordered-carbon-coated SnO2 nanoparticles for Li rechargeable batteries. Electrochem Solid-State Lett 9:A408–A411

    Article  CAS  Google Scholar 

  • Moskon J, Dominko R, Gaberscek M, Cerc-Korosec R, Jamnic J (2006) Citrate-derived carbon nanocoatings for poorly conducting cathode. J Electrochem Soc 153:A1805–A1811

    Article  CAS  Google Scholar 

  • Oh SW, Myung ST, Oh SM, Oh KH, Amine K, Scrosati B, Sun YK (2010) Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries. Adv Mater 22:4842–4845

    Article  CAS  Google Scholar 

  • Padhi AK, Nanjundaswamy KS, Goodenough J (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  • Palomares V, Goñi A, Muro IG, Meatza I, Bengoechea M, Miguel O, Rojo T (2007) New freeze-drying method for LiFePO4 synthesis. J Power Sources 171:879–885

    Article  CAS  Google Scholar 

  • Palomares V, Goñi A, Muro IG, Meatza I, Bengoechea M, Cantero I, Rojo T (2009) Influence of carbon content on LiFePO4/C samples synthesized by freeze-drying process. J Electrochem Soc 156:A817–A821

    Article  CAS  Google Scholar 

  • Ramana CV, Mauger A, Gendron F, Julien CM, Zaghib K (2009) Study of the Li-insertion/extraction process in LiFePO4/FePO4. J Power Sources 187:555–564

    Article  CAS  Google Scholar 

  • Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97:503–507

    Article  Google Scholar 

  • Shim HW, Jin YH, Seo SD, Lee SH, Kim DW (2011) Highly reversible lithium storage in bacillus subtilis-directed porous Co3O4 nanostructures. ACS Nano 5:443–449

    Article  CAS  Google Scholar 

  • Son D, Jung DR, Kim J, Moon T, Kim C, Park B (2007) Synthesis and photoluminescence of Mn-doped zinc sulfide nanoparticles. Appl Phys Lett 90:101910

    Article  Google Scholar 

  • Srinivasan V, Newman J (2004) Discharge model for the lithium iron-phosphate electrode. J Electrochem Soc 151:A1517–A1529

    Article  CAS  Google Scholar 

  • Wang YG, Wang YR, Hosono EJ, Wang KX, Zhou HS (2008) The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed 47:7461–7465

    Article  CAS  Google Scholar 

  • Wang G, Liu H, Liu J, Qiao S, Lu GM, Munroe P, Ahn H (2010) Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv Mater 22:4944–4948

    Article  CAS  Google Scholar 

  • Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301

    Article  CAS  Google Scholar 

  • Wu XL, Jiang LY, Cao FF, Guo YG, Wan LJ (2009) LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy-storage devices. Adv Mater 21:2710–2714

    Article  CAS  Google Scholar 

  • Yonemura M, Yamada A, Takei Y, Sonoyama N, Kanno R (2004) Comparative kinetic study of olivine LixMPO4 (M = Fe, Mn). J Electrochem Soc 151:A1352–A1356

    Article  CAS  Google Scholar 

  • Yu DYW, Fietzek C, Weydanz W, Donoue K, Inoue T, Kurokawa H, Fujitani S (2007) Study of LiFePO4 by cyclic voltammetry. J Electrochem Soc 154:A253–A257

    Article  CAS  Google Scholar 

  • Zhao J, He J, Zhou J, Guo Y, Wang T, Wu S, Ding X, Huang R, Xue H (2011) Facile synthesis for LiFePO4 nanospheres in tridimensional porous carbon framework for lithium ion batteries. J Phys Chem C 115:2888–2894

    Article  CAS  Google Scholar 

  • Zhu C, Yu Y, Gu L, Weichert K, Maier J (2011) Electrospinning of highly electroactive carbon-coated single crystalline LiFePO4 nanowires. Angew Chem Int Ed 50:6278–6282

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea through the Korean Government (MEST: NRF, 2010-0029065) and the World Class University (WCU, R31-2008-000-10075-0).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Ho Kim or Byungwoo Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wi, S., Nam, S., Oh, Y. et al. Facile synthesis of porous-carbon/LiFePO4 nanocomposites. J Nanopart Res 14, 1327 (2012). https://doi.org/10.1007/s11051-012-1327-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1327-1

Keywords

Navigation