Skip to main content
Log in

Spectroscopic and microscopic investigation of gold nanoparticle nucleation and growth mechanisms using gelatin as a stabilizer

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A microscopic and spectroscopic investigation of the synthesis of gold nanoparticles (AuNPs) within gelatin is reported. The AuNPs were synthesized first by reducing tetrachloraurate ions (AuCl4) by 2-[4-(2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid (HEPES), mixing the HAuCl4/HEPES solution with gelatin solution and heating at different temperatures. The polymeric structure of gelatin stabilized the HAuCl4/HEPES/gelatin system and slowed the synthesis of AuNPs, enabling a time-dependent investigation. Based on the results of transmission electron microscopy (TEM) analysis and UV–Vis spectra, we identified three distinct stages involved in the synthesis of AuNPs. First, during the initial stage, the reduction of gold precursor occurred along with nucleation and growth, which resulted in a red-shift phenomenon of the localized surface plasmon resonance (LSPR) peak of AuNPs in UV–Vis spectra (size and size dispersion increase). Second, the LSPR peaks showed red-shift first and then blue-shift during the growth of AuNPs. The blue-shift might result from the diffusion-limited Ostwald-ripening mechanism. Third, as the supply of the growth species became lower, during the growth of AuNPs, a diffusion-limited Ostwald-ripening mechanism along with a blue-shift only phenomenon in UV–Vis spectra was observed. We also determined that slowing the synthesis process during the nucleation stage can prolong the nucleation time, which can generate larger AuNPs. The TEM analysis showed that higher heating temperature and longer heating time can lead to larger particles. By controlling the reduction (nucleation) time, heating time and temperature, AuNPs of size ranging from 5 to 17 nm can be synthesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aikens C (2008) Origin of discrete optical absorption spectra of M25 (SH) 18−nanoparticles (M = Au, Ag). J Phy Chem C 112(50):19797–19800

    Article  CAS  Google Scholar 

  • Alvarez M, Khoury J, Schaaff T (1997) Optical absorption spectra of nanocrystal gold molecules. J Phy Chem B 101:3706–3712

    Article  CAS  Google Scholar 

  • Bao Y, Zhong C, Vu D, Temirov J (2007) Nanoparticle-free synthesis of fluorescent gold nanoclusters at physiological temperature. J Phys Chem C 111(33):12194–12198

    Article  CAS  Google Scholar 

  • Bastús NG, Comenge J, Puntes Vc (2011) Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27(17):11098–11105

    Article  Google Scholar 

  • Boisselier E (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    Article  CAS  Google Scholar 

  • Burda C, Chen X, Narayanan R (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  • Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  CAS  Google Scholar 

  • Deka J, Paul A (2009) Sensitive protein assay with distinction of conformations based on visible absorption changes of citrate-stabilized gold nanoparticles. J Phy Chem C 115(32):15752–15757

    Google Scholar 

  • Dharmaratne AC, Krick T, Dass A (2009) Nanocluster size evolution studied by mass spectrometry in room temperature Au25(SR)18 synthesis. J Am Chem Soc 131(38):13604–13605

    Article  CAS  Google Scholar 

  • Diamanti S, Elsen A, Naik R (2009) Relative functionality of buffer and peptide in gold nanoparticle formation. J Phy Chem C 113(23):9993–9997

    Article  CAS  Google Scholar 

  • Dickerson MB, Sandhage KH, Naik RR (2008) Protein- and peptide-directed syntheses of inorganic materials. Chem Rev 108(11):4935–4978

    Article  CAS  Google Scholar 

  • Edwards DA, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew ML, Mintzes J, Deaver D, Lotan N, Langer R (1997) Large porous particles for pulmonary drug delivery. Science 276(5320):1868–1872

    Article  CAS  Google Scholar 

  • Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35(3):209–217

    Article  CAS  Google Scholar 

  • Gobin AM, Watkins EM, Quevedo E, Colvin VL, West JL (2010) Near-infrared-resonant gold/gold sulfide nanoparticles as a photothermal cancer therapeutic agent. Small 6(6):745–752

    Article  CAS  Google Scholar 

  • Habib A, Tabata M (2005) Formation of gold nanoparticles by goods buffers. Bull Chem Soc Jpn 78(2):262–269

    Article  CAS  Google Scholar 

  • Han J, Lazarovici P, Pomerantz C, Chen X, Wei Y, Lelkes PI (2010) Co-electrospun blends of PLGA, gelatin, and elastin as potential nonthrombogenic scaffolds for vascular tissue engineering. Biomacromolecules 12(2):399–408

    Article  Google Scholar 

  • Housni AAM, Liu S, Narain R (2008) Monodisperse protein stabilized gold nanoparticles via a simple photochemical process. J Phys Chem C 112(32):12282–12290

    Article  CAS  Google Scholar 

  • Jans H, Liu X, Austin L, Maes G, Huo Q (2009) Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal Chem 81(22):9425–9432

    Article  CAS  Google Scholar 

  • Jena B (2006) Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. Anal Chem 78(18):6332–6339

    Article  CAS  Google Scholar 

  • Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183

    Article  CAS  Google Scholar 

  • LaMer KDRH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4857

    Article  CAS  Google Scholar 

  • Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27(13):2705–2715

    Article  CAS  Google Scholar 

  • Lin S-Y, Tsai Y-T, Chen C-C, Lin C-M, Chen C-H (2004) Two-step functionalization of neutral and positively charged thiols onto citrate-stabilized Au nanoparticles. J Phys Chem B 108(7):2134–2139

    Article  CAS  Google Scholar 

  • Liu G, Luais E, Gooding JJ (2011) The fabrication of stable gold nanoparticle-modified interfaces for electrochemistry. Langmuir 27(7):4176–4183

    Article  CAS  Google Scholar 

  • Lopez-Acevedo O, Tsunoyama H, Tsukuda T, Häkkinen H, Aikens CM (2010) Chirality and electronic structure of the thiolate-protected Au38 nanocluster. J Am Chem Soc 132(23):8210–8218

    Article  CAS  Google Scholar 

  • Luo S, Xu J, Zhang Y, Liu S, Wu C (2005) Double hydrophilic block copolymer monolayer protected hybrid gold nanoparticles and their shell cross-linking. J Phys Chem B 109(47):22159–22166

    Article  CAS  Google Scholar 

  • Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J (2008) The role of interparticle and external forces in nanoparticle assembly. Nat Mater 7(7):527–538

    Article  CAS  Google Scholar 

  • Nehl CL, Hafner JH (2008) Shape-dependent plasmon resonances of gold nanoparticles. J Mater Chem 18(21):2415

    Article  CAS  Google Scholar 

  • Ojea-Jiménez I, Puntes V (2009) Instability of cationic gold nanoparticle bioconjugates: the role of citrate ions. J Am Chem Soc 131(37):13320–13327

    Article  Google Scholar 

  • Olsen D, Yang C, Bodo M, Chang R (2003) Advanced drug delivery reviews : recombinant collagen and gelatin for drug delivery. Adv Drug Deliv Rev 55(12):1547–1567

    Article  CAS  Google Scholar 

  • Orendorff C, Gole A, Sau T (2005) Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Anal Chem 77(10):3261–3266

    Article  CAS  Google Scholar 

  • Ovsianikov A, Deiwick A, van Vlierberghe S, Dubruel P, Möller L, Dräger G, Chichkov B (2011) Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules 12(4):851–858

    Article  CAS  Google Scholar 

  • Pal T (1994) Gelatin-A compound for all reasons. J Chem Educ 71(8):679

    Article  CAS  Google Scholar 

  • Panigrahi S, Kundu S, Basu S, Praharaj S, Jana S, Pande S, Ghosh SK, Pal A, Pal T (2007) Nonaqueous route for the synthesis of copper organosol from copper stearate: an effective catalyst for the synthesis of octylphenyl ether. J Phys Chem C 111(4):1612–1619

    Article  CAS  Google Scholar 

  • Polte J, Ahner TT, Delissen F, Sokolov S, Emmerling F, Thnemann AF, Kraehnert R (2010a) Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J Am Chem Soc 132(4):1296–1301

    Article  CAS  Google Scholar 

  • Polte J, Erler R, Thünemann AF, Sokolov S, Ahner TT, Rademann K, Emmerling F, Kraehnert R (2010b) Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. ACS Nano 4(2):1076–1082

    Article  CAS  Google Scholar 

  • Pong B-K, Elim HI, Chong JX, Ji W, Trout BL, Lee JY (2007) New insights on the nanoparticle growth mechanism in the citrate reduction of gold(III) salt: formation of the Au nanowire intermediate and its nonlinear optical properties. J Phys Chem C 111(17):6281–6287

    Article  CAS  Google Scholar 

  • Ray PC (2010) Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem Rev 110(9):5332–5365

    Article  CAS  Google Scholar 

  • Rosi N (2005) Nanostructures in biodiagnostics. Chem Rev 105(1):1547–1562

    Article  CAS  Google Scholar 

  • Ryan JA, Overton KW, Speight ME, Oldenburg CN, Loo L, Robarge W, Franzen S, Feldheim DL (2007) Cellular uptake of gold nanoparticles passivated with BSA-SV40 large T antigen conjugates. Anal Chem 79(23):9150–9159

    Article  CAS  Google Scholar 

  • Sánchez-Iglesias A, Pastoriza-Santos I, Pérez-Juste J, Rodríguez-González B, García de Abajo FJ, Liz-Marzán LM (2006) Synthesis and optical properties of gold nanodecahedra with size control. Adv Mater 18(19):2529–2534

    Article  Google Scholar 

  • Sardar R, Park J (2007) Polymer-induced synthesis of stable gold and silver nanoparticles and subsequent ligand exchange in water. Langmuir 23(23):11883–11889

    Article  CAS  Google Scholar 

  • Sardar R, Shumaker-Parry JS (2011) Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size. J Am Chem Soc 133(21):8179–8190

    Article  CAS  Google Scholar 

  • Sardar R, Funston A, Mulvaney P (2009) Gold nanoparticles: past, present, and future. Langmuir 25(24):13840–13851

    Article  CAS  Google Scholar 

  • Serizawa T, Hirai Y (2009) Novel synthetic route to peptide-capped gold nanoparticles. Langmuir 25(20):12229–12234

    Article  CAS  Google Scholar 

  • Shevchenko EV, Talapin DV, Schnablegger H, Kornowski A, Festin Ö, Svedlindh P, Haase M, Weller H (2003) Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals. J Am Chem Soc 125(30):9090–9101

    Article  CAS  Google Scholar 

  • Shi L, Pei C, Li Q (2010a) Fabrication of ordered single-crystalline CuInSe2 nanowire arrays. CrystEngComm 12(11):3882–3885

    Article  CAS  Google Scholar 

  • Shi L, Pei C, Li Q (2010b) Ordered arrays of shape tunable CuInS2 nanostructures, from nanotubes to nano test tubes and nanowires. Nanoscale 2(10):2126–2130

    Article  CAS  Google Scholar 

  • Shi L, Pei C, Xu Y, Li Q (2011) Template-directed synthesis of ordered single-crystalline nanowires arrays of Cu2ZnSnS4 and Cu2ZnSnSe4. J Am Chem Soc 133(27):10328–10331

    Article  CAS  Google Scholar 

  • Shukla R, Bansal V, Chaudhary M, Basu A (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21(23):10644–10654

    Article  CAS  Google Scholar 

  • Sun L, Liu D, Wang Z (2008) Functional gold nanoparticle-peptide complexes as cell-targeting agents. Langmuir 24(18):10293–10297

    Article  CAS  Google Scholar 

  • Tielens S, Declercq H, Gorski T, Lippens E, Schacht E, Cornelissen M (2007) Gelatin-based microcarriers as embryonic stem cell delivery system in bone tissue engineering: an in vitro study. Biomacromolecules 8(3):825–832

    Article  CAS  Google Scholar 

  • Torigoe K, Esumi K (1999) Preparation and catalytic effect of gold nanoparticles in water dissolving carbon disulfide. J Phys Chem B 103(15):2862–2866

    Article  CAS  Google Scholar 

  • Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  • Wei H, Wang Z, Zhang J, House S, Gao Y-G, Yang L, Robinson H, Tan LH, Xing H, Hou C, Robertson IM, Zuo J-M, Lu Y (2011) Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. Nat Nanotechnol 6(2):93–97

    Article  CAS  Google Scholar 

  • Witten T Jr, Sander L (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47(19):1400–1403

    Article  CAS  Google Scholar 

  • Won Y-W, Yoon S-M, Sonn CH, Lee K-M, Kim Y-H (2011) Nano self-assembly of recombinant human gelatin conjugated with α-tocopheryl succinate for Hsp90 inhibitor, 17-AAG delivery. ACS Nano 5(5):3839–3848

    Article  CAS  Google Scholar 

  • Wu X, Thrall E, Liu H (2010) Plasmon induced photovoltage and charge separation in citrate-stabilized gold nanoparticles. J Phy Chem C 114(30):12896–12899

    Article  CAS  Google Scholar 

  • Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48(1):60–103

    Article  CAS  Google Scholar 

  • Xu LG, Zhu YY, Ma W, Chen W, Liu L, Kuang H, Wang L, Xu C (2011) New synthesis strategy for DNA functional gold nanoparticles. J Phys Chem C 115(8):3243–3249

    Article  CAS  Google Scholar 

  • Zhang J-J, Gu M-M, Zheng T-T, Zhu J-J (2009) Synthesis of gelatin-stabilized gold nanoparticles and assembly of carboxylic single-walled carbon nanotubes/Au composites for cytosensing and drug uptake. Anal Chem 81(16):6641–6648

    Article  CAS  Google Scholar 

  • Zhou Y, Wang C, Zhu Y (1999) A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature. Chem Mater 11(9):2310–2312

    Article  CAS  Google Scholar 

  • Zhou CSC, Yu M, Qin Y, Wang J, Kim M, Zheng J (2010) Luminescent gold nanoparticles with mixed valence states generated from dissociation of polymeric Au(I) thiolates. J Phys Chem C 114(17):7727–7732

    Article  CAS  Google Scholar 

  • Zhu T, Vasilev K, Kreiter M, Mittler S (2003) Surface modification of citrate-reduced colloidal gold nanoparticles with 2-mercaptosuccinic acid. Langmuir 19(22):9518–9525

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jay Campbell of Department of Biochemistry at University of Wisconsin-Madison for his assistance with acquiring TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundaram Gunasekaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YC., Gunasekaran, S. Spectroscopic and microscopic investigation of gold nanoparticle nucleation and growth mechanisms using gelatin as a stabilizer. J Nanopart Res 14, 1200 (2012). https://doi.org/10.1007/s11051-012-1200-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1200-2

Keywords

Navigation