Skip to main content
Log in

Field emission properties originated from 2D electronics gas successively tunneling for 1D heterostructures of ZnO nanobelts decorated with In2O3 nanoteeth

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

ZnO–In2O3 one-dimensional (1D) nanosized heterostructures constructed by ZnO belts and In2O3 tooth-like particles were self-assembled on single crystal silicon substrate using thermal chemical vapor transport and condensation without being aided by any metal catalyst. The morphology, structure, and composition of the as-synthesized 1D heterostructures were analyzed in detail. The widths of the ZnO nanobelts ranged from several tens of nanometers to one micrometer, and the lengths ranged from several tens to one hundred of micrometers. In2O3 tooth-like nanoparticles with sizes of about 50–100 nm were found grown at two edges of ZnO nanobelts. ZnO nanobelts grew along [\( 10\overline{1} 0 \)] direction, whereas In2O3 nanoteeth grew along [\( 31\overline{1} \)], [\( 3\overline{1} 1 \)], [\( \overline{3} \overline{1} 1 \)], and [\( \overline{3} 1\overline{1} \)] directions so as to form rhombus-shaped structures. The growth mechanism of the nanosized heterostructures was discussed on the basis of the vapor–solid process and polar surface effect of ZnO nanobelts. Field emission characteristics of the as-prepared heterostructures were measured and explained by energy band theory of heterostructure in detail. It is important to note that the 2D electronics gas (2DEG) was formed between the ZnO energy band bending down and the interface of the heterostructure. The successive tunneling of 2DEG that took place from ZnO to In2O3 and then from In2O3 to vacuum was the main reason resulting in electronics emission for the nanosized heterostructures in the process of field emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cheng CW, Liu B, Yang HY, Zhou WW, Li Sun, Chen R, Yu SF, Zhang JX, Gong H, Sun HD, Fan HJ (2009) Hierarchical assembly of ZnO nanostructures on SnO2 backbone nanowires: low-temperature hydrothermal preparation and optical properties. ACS Nano 3:3069–3076. doi:10.1021/nn900848x

    Article  CAS  Google Scholar 

  • Gupta RK, Ghosh K, Patel R, Mishra SR, Kahol PK (2008) Band gap engineering of ZnO thin films by In2O3 incorporation. J Cryst Growth 310:3019. doi:10.1016/j.jcrysgro.2008.03.004

    Article  CAS  Google Scholar 

  • Kong XY, Ding Y, Yang RS, Wang ZL (2004) Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 303:1349–1351. doi:10.1126/science.1092356

    Article  Google Scholar 

  • Lin J, Huang Y, Bando Y, Tang CC, Li C, Golberg D (2010) Synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures and their electrical and field-emission properties. ACS Nano 4:2452–2458. doi:10.1021/nn100254f

    Article  CAS  Google Scholar 

  • Liu YL, Liu YC, Yang H, Wang WB, Ma JG, Zhang JY, Lu YM, Shen DZ, Fan XW (2003) The optical properties of ZnO films grown on porous Si templates. J Phys D Appl Phys 36:2705–2708. doi:10.1088/0022-3727/36/21/017

    Article  CAS  Google Scholar 

  • Mazeina L, Picard YN, Prokes SM (2009) Controlled growth of parallel oriented ZnO nanostructural arrays on Ga2O3 nanowires. Cryst Growth Des 9:1164–1169. doi:10.1021/cg800993b

    Article  CAS  Google Scholar 

  • Sahoo S, Gaur APS, Arora AK, Katiyar RS (2011) Optical properties of In2O3 octahedra nano-beads grown on ZnO nanowires. Chem Phys Lett 510:242–245. doi:10.1016/j.cplett.2011.05.054

    Article  CAS  Google Scholar 

  • Shen GZ, Chen D, Lee CJ (2006) Hierarchical saw-like ZnO nanobelt/ZnS nanowire heterostructures induced by polar surfaces. J Phys Chem B 110:15689–15693. doi:10.1021/jp0630119

    Article  CAS  Google Scholar 

  • Vomiero A, Ferroni M, Comini E, Faglia G, Sberveglieri G (2007) Preparation of radial and longitudinal nanosized heterostructures of In2O3 and SnO2. Nano Lett 7:3358–3553. doi:10.1021/nl071339n

    Article  Google Scholar 

  • Wang B, Yang YH, Wang CX, Yang GW (2005a) Growth and photoluminescence of SnO2 nanostructures synthesized by Au–Ag alloying catalyst assisted carbothermal evaporation. Chem Phys Lett 407:347–353. doi:10.1016/j.cplett.2005.03.119

    Article  CAS  Google Scholar 

  • Wang B, Yang YH, Wang CX, Yang GW (2005b) Nanostructures and self-catalyzed growth of SnO2. J Appl Phys 98:073520(1–5). doi:10.1063/1.2060952

    Google Scholar 

  • Wang JX, Sun XW, Xie SS, Yang Y, Chen HY, Lo GQ, Kwong DL (2007) Preferential growth of SnO2 triangular nanoparticles on ZnO nanobelts. J Phys Chem C 111:7671–7675. doi:10.1021/jp0709631

    Article  CAS  Google Scholar 

  • Wang QY, Yu K, Xu F, Wu J, Xu Y, Zhu ZQ (2008) Synthesis and field-emission properties of In2O3 nanostructures. Mater Lett 62:2710–2713. doi:10.1016/j.matlet.2008.01.022

    Article  CAS  Google Scholar 

  • Wang NW, Yang YH, Yang GW (2009) Indium oxide–zinc oxide nanosized heterostructure and whispering gallery mode luminescence emission. J Phys Chem C 113:15480–15483. doi:10.1021/jp906924w

    Article  CAS  Google Scholar 

  • Wang NW, Yang YH, Chen J, Xu NS, Yang GW (2010) One-dimensional Zn-doped In2O3–SnO2 superlattice nanostructures. J Phys Chem C 114:2909–2912. doi:10.1021/jp910802z

    Article  CAS  Google Scholar 

  • Wang NW, Yang YH, Yang GW (2011a) Great blue-shift of luminescence of ZnO nanoparticle array constructed from ZnO quantum dots. Nano Res Lett 6:338. doi:10.1186/1556-276X-6-338

    Article  Google Scholar 

  • Wang Y, Li YW, Yu K, Zhu ZQ (2011b) Controllable synthesis and field emission enhancement of Al2O3 coated In2O3 core–shell nanostructures. J Phys D Appl Phys 44:105301. doi:10.1088/0022-3727/44/10/105301

    Article  Google Scholar 

  • Wu LL, Liang Y, Liu FW, Lu HQ, Xu HY, Zhang XT, Hark SK (2010) Preparation of ZnO/In2O3(ZnO)n heterostructure nanobelts. Cryst Eng Comm 12:4152–4155. doi:10.1039/c0ce00035c

    CAS  Google Scholar 

  • Xu L, Su Y, Li S, Chen YQ, Zhou QT, Yin S, Feng Y (2007) Self-assembly and hierarchical organization of Ga2O3/In2O3 nanostructures. J Phys Chem B 111:760–766. doi:10.1021/jp066609p

    Article  CAS  Google Scholar 

  • Yang YH, Wang B, Xu NS, Yang GW (2006) Field emission of one-dimensional micro- and nanostructures of zinc oxide. Appl Phys Lett 89:043108. doi:10.1063/1.2234838

    Article  Google Scholar 

  • Yang Y, Kim DS, Knez M, Scholz R, Berger A, Pippel E, Hesse D, Golsele U, Zacharias M (2008) Influence of temperature on evolution of coaxial ZnO/Al2O3 one-dimensional heterostructures: from core–shell nanowires to spinel nanotubes and porous nanowires. J Phys Chem C 112:4068–4074. doi:10.1021/jp710948j

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (50902097), Three Industry Basic Research Emphasis Project of Shenzhen (JC201104210013A), None Three Industry Basic Research Common Project of Shenzhen (JC201105170694A), Open Project of Shenzhen Key Laboratory of Micro–nano Photonic Information Technology (MN201107), Open Project of Shenzhen Key Laboratory of Sensor Technology (SST201102), and Guangdong Natural Science Foundation of China (9451806001002303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Jin, X., Ouyang, Z.B. et al. Field emission properties originated from 2D electronics gas successively tunneling for 1D heterostructures of ZnO nanobelts decorated with In2O3 nanoteeth. J Nanopart Res 14, 1008 (2012). https://doi.org/10.1007/s11051-012-1008-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1008-0

Keywords

Navigation