Skip to main content

Synthesis of Nanoparticles by Physical Route

  • Chapter
  • First Online:
Synthesis and Applications of Nanoparticles

Abstract

Development of nanoscience has evoked new technologies both in sample preparation and device fabrication. Synthesis and development of nanoparticles that are synonyms to quantum-confined atom is an important milestone in this pursuit. In recent years, a significant development with advanced improvements has been been made in the synthesis methods of nanomaterials. The nanoparticles can be prepared by using two well-known approaches, i.e., top-down approach and bottom-up approach. This chapter gives an overview of the various physical routes of synthesis of nanoparticles. Various methods of preparing nanomaterials including mechanical milling, sputtering, laser pyrolysis, laser ablation, electron beam evaporation, and nanolithography are discussed in this chapter. As a summary, this chapter describes the main physical routes for nanoparticle synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulateef SA, et al. (2016) Preparation of CuO nanoparticles by laser ablation in liquid. AIP Conference Proceedings. Vol. 1733. No. 1. AIP Publishing

    Google Scholar 

  • Adachi H, Wasa K (2012) 1—thin films and nanomaterials. In: Wasa K, Kanno I, Kotera H (eds) Handbook of sputtering technology, 2nd edn. William Andrew Publishing, pp 3–39

    Chapter  Google Scholar 

  • Al-Azawi MA, Bidin N (2015) Gold nanoparticles synthesized by laser ablation in deionized water: influence of liquid layer thickness and defragmentation on the characteristics of gold nanoparticles. Chin J Phys 53(4):201–209

    Google Scholar 

  • Al-Dahash G, Khilkala WM, Abd Alwahid SN (2018) Preparation and characterization of ZnO nanoparticles by laser ablation in NaOH aqueous solution. Iran J Chem Chem Eng (IJCCE) 37(1):11–16

    CAS  Google Scholar 

  • Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11(20):3805–3821

    Article  CAS  PubMed  Google Scholar 

  • Bharti et al (2020) Potential of magnetic nanoferrites in removal of heavy metals from contaminated water: mini review. J Supercond Nov Magn 33:3651–3665

    Article  CAS  Google Scholar 

  • Asanithi P, Chaiyakun S, Limsuwan P (2012) Growth of silver nanoparticles by DC magnetron sputtering. J Nanomater 2012:79

    Article  CAS  Google Scholar 

  • Ayyub P, Chandra R, Taneja P, Sharma AK, Pinto R (2001) Appl Phys A Mater Sci Process 73:67–73

    Article  CAS  Google Scholar 

  • Benjamin JS (1970) Metal Trans 1:2943

    Article  CAS  Google Scholar 

  • Betancourt AP, Goswami DY, Bhethanabotla VR, Kuhn JN (2021) Catal Commun 149:106213

    Article  CAS  Google Scholar 

  • Boutinguiza M et al (2013) Synthesis of titanium oxide nanoparticles by ytterbium fiber laser ablation. Physics Procedia 41:787–793

    Article  CAS  Google Scholar 

  • "lithography." Britannica Concise Encyclopedia. 2005. Encyclopædia Britannica Premium Service 14 Feb. 2005 http://www.britannica.com/ebc/article?tocId=9370361

  • Carneiro JO et al (2014) Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties. J Mater Sci 49(21):7476–7488

    Article  CAS  Google Scholar 

  • Damonte LC et al (2004) Nanoparticles of ZnO obtained by mechanical milling. Powder Technol 148(1):15–19

    Article  CAS  Google Scholar 

  • Das A et al (2016) Copper oxide nano-particles film on glass by using sputter and chemical bath deposition. Adv Mater Lett 7(8):600–603

    Article  CAS  Google Scholar 

  • Du P, Song L, Xiong J, Li N, Xi Z, Wang L, Jin D, Guo S, Yuan Y (2012) Electrochim Acta 78:392–397

    Article  CAS  Google Scholar 

  • Giri PK et al (2007) Correlation between microstructure and optical properties of ZnO nanoparticles synthesized by ball milling. J Appl Phys 102(9):093515

    Article  CAS  Google Scholar 

  • Gondal MA et al (2009) Synthesis of ZnO2 nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles. Appl Surf Sci 256(1):298–304

    Article  CAS  Google Scholar 

  • Gondal MA et al (2013) Synthesis of cu/Cu2O nanoparticles by laser ablation in deionized water and their annealing transformation into CuO nanoparticles. J Nanosci Nanotechnol 13(8):5759–5766

    Article  CAS  PubMed  Google Scholar 

  • Gunnarsson R, Helmersson U, Pilch I (2015) Synthesis of titanium-oxide nanoparticles with size and stoichiometry control. J Nanopart Res 17(9):353

    Article  CAS  Google Scholar 

  • Hajiesmaeilbaigi F et al (2005) Preparation of silver nanoparticles by laser ablation and fragmentation in pure water. Laser Phys Lett 3(5):252

    Article  CAS  Google Scholar 

  • Hu XL, Takai O, Saito N (2013) Synthesis of gold nanoparticles by solution plasma sputtering in various solvents. J Phys Conf Ser 417:1. IOP Publishing

    Article  CAS  Google Scholar 

  • Jaiswal J, Chauhan S, Chandra R (2015) Influence of sputtering parameters on structural, optical and thermal properties of copper nanoparticles synthesized by dc magnetron sputtering. Int J Sci Technol Manage 4(01):678–688

    Google Scholar 

  • Jones AC, Hitchman ML (2008) In: Jones AC, Hitchman ML (eds) Chemical vapour deposition. Royal Society of Chemistry, Cambridge, pp 1–36

    Chapter  Google Scholar 

  • Kammakakam I, Falath WS (2021) Nanomaterials: a review of synthesis, properties, recent progress, and challenges. Mater Adv 2021(2):1821–1871

    Google Scholar 

  • Khayati GR, Janghorban K (2013) Preparation of nanostructure silver powders by mechanical decomposing and mechanochemical reduction of silver oxide. Trans Nonferrous Met Soc China 23(5):1520–1524

    Article  CAS  Google Scholar 

  • Khayati GR et al (2013) Synthesis of cuprous oxide nanoparticles by mechanochemical oxidation of copper in high planetary energy ball mill. Adv Powder Technol 24(1):301–305

    Article  CAS  Google Scholar 

  • Khumaeni A, Budi WS, Sutanto H (2017) Synthesis and characterization of high-purity gold nanoparticles by laser ablation method using low-energy Nd: YAG Laser 1064 nm. J Phys Conf Ser 909:1

    Article  CAS  Google Scholar 

  • Kulkarni SK (2015) Nanotechnology: principles and practices. Springer International Publishing. 978-3-319-09171-6

    Google Scholar 

  • Kumar PS, Sundaramurthy J, Sundarrajan S, Babu VJ, Singh G, Allakhverdiev SI, Ramakrishna S (2014) Energy Environ Sci 7:3192–3222

    Article  CAS  Google Scholar 

  • Lerner MI, Pervikov AV, Glazkova EA, Svarovskaya NV, Lozhkomoev AS, Psakhie SG (2016) Powder Technol 288:371–378

    Article  CAS  Google Scholar 

  • Llyin AP, Nazarenko OB, Tikhonov DV (2012) J Nanosci Tech 12(10):8137–8142

    Google Scholar 

  • Lyu H, Gao B, He F, Ding C, Tang J, Crittenden JC (2017) ACS Sustain Chem Eng 5:9568–9585

    Article  CAS  Google Scholar 

  • Maciulevičius M et al (2013) On-line characterization of gold nanoparticles generated by laser ablation in liquids. Phys Procedia 41:531–538

    Article  CAS  Google Scholar 

  • Malekzadeh M, Rohani P, Liu Y, Raszewski A, Ghanei F, Swihart MT (2020) Laser pyrolysis synthesis of zinc-containing nanomaterials using low-cost ultrasonic spray delivery of precursors. Powder Technol 376:104–112

    Article  CAS  Google Scholar 

  • Mintcheva N et al (2018) Laser-ablated ZnO nanoparticles and their photocatalytic activity toward organic pollutants. Materials (Basel) 11(7):1127

    Article  CAS  Google Scholar 

  • Mollenstedt G, Speidel R (1960) Physik Blatter 16:100

    Google Scholar 

  • Munoz-Garcıa J, Vazquez L, Cuerno R, Sanchez-Garcıa JA, Castro M, Gago R (2009) Toward functional nanomaterials. Springer US, New York, NY, pp 323–398

    Book  Google Scholar 

  • Nam JH, Jang MJ, Jang HY, Park W, Wang X, Choi SM, Cho B (2020) J Energy Chem 47:107–111

    Article  Google Scholar 

  • Ostermann R, Cravillon J, Weidmann C, Wiebcke M, Smarsly BM (2011) Chem Commun 47:442–444

    Article  CAS  Google Scholar 

  • Peng Y, Park C, Laughlin DE (2003) Fe 3 O 4 thin films sputter deposited from iron oxide targets. J Appl Phys 93(10):7957–7959

    Article  CAS  Google Scholar 

  • Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) Dip-pen″ nanolithography. Science 283:661–663

    Article  CAS  PubMed  Google Scholar 

  • Prasad Yadav T, Yadav RM, Pratap Singh D (2012) Nanosci Nanotechnol 2:22–48

    Article  CAS  Google Scholar 

  • Pyatenko A et al (2004) Synthesis of silver nanoparticles by laser ablation in pure water. Appl Phys A Mater Sci Process 79(4–6):803–806

    Article  CAS  Google Scholar 

  • Rashid J et al (2015) ZnO-nanoparticles thin films synthesized by RF sputtering for photocatalytic degradation of 2-chlorophenol in synthetic wastewater. J Ind Eng Chem 23:134–139

    Article  CAS  Google Scholar 

  • Salah N et al (2011) High-energy ball milling technique for ZnO nanoparticles as antibacterial material. Int J Nanomedicine 6:863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salari M et al (2008) Effect of milling time on mechanochemical synthesis of TiO2 nanoparticles. Int J Mod Phys B 22(18n19):2955–2961

    Article  CAS  Google Scholar 

  • Sebastian EM, Jain SK, Purohit R, Dhakad SK, Rana RS (2020) Nanolithography and its current advancements. Mater Today Proc 26(2):2351–2356

    Article  CAS  Google Scholar 

  • Shah KA, Tali BA (2016) Mater Sci Semicond Process 41:67–82

    Article  CAS  Google Scholar 

  • Shah P, Gavrin A (2006) Synthesis of nanoparticles using high-pressure sputtering for magnetic domain imaging. J Magn Magn Mater 301(1):118–123

    Article  CAS  Google Scholar 

  • Singh A et al (2016) Pulsed laser ablation-induced green synthesis of TiO2 nanoparticles and application of novel small angle X-ray scattering technique for nanoparticle size and size distribution analysis. Nanoscale Res Lett 11(1):447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Son HH, Seo GH, Jeong U, Shin DY, Kim SJ (2017) Int J Heat Mass Transf 113:115–128

    Article  CAS  Google Scholar 

  • Sutter E, Ozturk B, Sutter P (2008) Nanotechnology 19(43):435607

    Article  PubMed  CAS  Google Scholar 

  • Tajdidzadeh M et al (2014) Synthesis of silver nanoparticles dispersed in various aqueous media using laser ablation. Sci World J 2014:324921

    Article  CAS  Google Scholar 

  • Valverde-Alva MA et al (2015) Synthesis of silver nanoparticles by laser ablation in ethanol: a pulsed photoacoustic study. Appl Surf Sci 355:341–349

    Article  CAS  Google Scholar 

  • Wender H, Migowski P, Feil AF, Teixeira SR, Dupont J (2013) Coord Chem Rev 257:2468–2483

    Article  CAS  Google Scholar 

  • Wender H et al (2011) Synthesis of gold nanoparticles by laser ablation of an Au foil inside and outside ionic liquids. Nanoscale 3(3):1240–1245

    Article  CAS  PubMed  Google Scholar 

  • Xing L et al (2016) Synthesis and morphology of iron–iron oxide Core–Shell nanoparticles produced by high pressure gas condensation. Nanotechnology 27(21):215703

    Article  PubMed  CAS  Google Scholar 

  • Yadav BC, Singh S, Yadav TP (2015) Titania prepared by ball milling: its characterization and application as liquefied petroleum gas sensor. Synth React Inorg Met-Org Nano-Met Chem 45(4):487–494

    Article  CAS  Google Scholar 

  • Yang B, Chen D (2017) Synthesis of CuO nanoparticles for catalytic application via ultrasound-assisted ball milling. Process Appl Ceram 11(1):39–44

    Article  CAS  Google Scholar 

  • Zhuang S, Lee ES, Lei L, Nunna BB, Kuang L, Zhang W (2016) Int J Energy Res 40:2136–2149

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krishnia, L., Thakur, P., Thakur, A. (2022). Synthesis of Nanoparticles by Physical Route. In: Thakur, A., Thakur, P., Khurana, S.P. (eds) Synthesis and Applications of Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-16-6819-7_3

Download citation

Publish with us

Policies and ethics