Skip to main content
Log in

Hydrothermal fabrication of well-ordered ZnO nanowire arrays on Zn foil: room temperature ultraviolet nanolasers

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Well-ordered nanowires of the hexagonal wurtzite ZnO having an average diameter of 80 nm, a typical length of 12 μm, and a mean packing density of 7.5 nanowires μm−2 have been directly grown on Zn foil in a preferred [0001] direction by a hydrothermal process and employed for room temperature ultraviolet nanolasers. The lasing action of arrayed ZnO nanowires has been observed from 370 to 400 nm with threshold irradiance of 25 kW cm−2. Photoluminescence decays biexponentially: the fast component is attributed to free-exciton decay, and the slow one is to bound-exciton decay. The amplitude of the fast component increases whereas its lifetime decreases with the increment of threshold irradiance, suggesting that ZnO nanowire arrays undergo a change in the lasing mechanism from exciton–exciton scattering to electron–hole plasma recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cao G, Rabenberg LK, Nunn CM, Mallouk TE (1991) Formation of quantum-size semiconductor particles in a layered metal phosphonate host lattice. Chem Mater 3:149–156

    Article  CAS  Google Scholar 

  • Chae W-S, Yoon J-H, Yu H, Jang D-J, Kim Y-R (2004) Ultraviolet emission of ZnS nanoparticles confined within a functionalized mesoporous host. J Phys Chem B 108:11509–11513

    Article  CAS  Google Scholar 

  • Chen M, Wang X, Yu YH, Pei ZL, Bai XD, Sun C, Huang RF, Wen LS (2000) X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl Surf Sci 158:134–140

    Article  CAS  Google Scholar 

  • Choy J-H, Jang E-S, Won J-H, Chung J-H, Jang D-J, Kim Y-W (2003) Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser. Adv Mater 15:1911–1914

    Article  CAS  Google Scholar 

  • Choy J-H, Jang E-S, Won J-H, Chung J-H, Jang D-J, Kim Y-W (2004) Hydrothermal route to ZnO nanocoral reefs and nanofibers. Appl Phys Lett 84:287–289

    Article  CAS  Google Scholar 

  • Du J, Xu LQ, Zou GF, Chai LL, Qian YT (2007) A solvothermal method to novel metastable ZnSe nanoflakes. Mater Chem Phys 103:441–445

    Article  CAS  Google Scholar 

  • Han XH, Wang GZ, Wang QT, Cao L, Liu RB, Zou BS, Hou JG (2005) Synthesis and optical properties of well-aligned ZnO nanorod array on an undoped ZnO film. Appl Phys Lett 86:223106

    Article  Google Scholar 

  • Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899

    Article  CAS  Google Scholar 

  • Jang E-S, Chen XY, Won J-H, Chung J-H, Jang D-J, Kim Y-W, Choy J-H (2010) Soft-solution route to ZnO nanowall array with low threshold power density. Appl Phys Lett 97:043109

    Article  Google Scholar 

  • Jeong JS, Lee JY (2010) Investigation of initial growth of ZnO nanowires and their growth mechanism. Nanotechnology 21:475603

    Article  Google Scholar 

  • Johnson JC, Knutsen KP, Yan HQ, Law M, Zhang YF, Yang PD, Saykally RJ (2004) Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers. Nano Lett 4:197–204

    Article  CAS  Google Scholar 

  • Kim MR, Jang D-J (2008) One-step fabrication of well-defined hollow CdS nanoboxes. Chem Commun 5218–5220

  • Kim JH, Jung Y, Chung JW, An BK, Park SY (2009a) Fabrication of a patterned assembly of semiconducting organic nanowires. Small 5:804–807

    Article  CAS  Google Scholar 

  • Kim J-Y, Lee S, Yoo K-H, Jang D-J (2009b) Coulomb blockade effect and negative differential resistance in the electronic transport of bacteriorhodopsin. Appl Phys Lett 94:153301

    Article  Google Scholar 

  • Kim J-Y, Kim MR, Park S-Y, Jang D-J (2010) Hydrothermal growth control of ZnSe·N2H4 nanobelts. CrystEngComm 12:1803–1808

    Article  CAS  Google Scholar 

  • Kim J-Y, Kim SJ, Jang D-J (2011) Laser-induced fabrication of Au@CdS core-shell nanowires. J Phys Chem C 115:672–675

    Article  CAS  Google Scholar 

  • Lee J, Yoon M (2009) Synthesis of visible light-sensitive ZnO nanostructures: subwavelength waveguides. J Phys Chem C 113:11952–11958

    Article  CAS  Google Scholar 

  • Li ZH, Luan YX, Wang QZ, Zhuang GS, Qi YX, Wang Y, Wang CG (2009) ZnO nanostructure construction on zinc foil: the concept from an ionic liquid precursor aqueous solution. Chem Commun 6273–6275

  • Lu JG, Ye ZZ, Huang JY, Wang L, Zhao BH (2003) Synthesis and properties of ZnO films with (100) orientation by SS-CVD. Appl Surf Sci 207:295–299

    Article  CAS  Google Scholar 

  • Lucas M, Wang ZL, Riedo E (2009) Combined polarized Raman and atomic force microscopy: in situ study of point defects and mechanical properties in individual ZnO nanobelts. Appl Phys Lett 95:051904

    Article  Google Scholar 

  • Mohanta A, Thareja RK (2008) Photoluminescence study of ZnO nanowires grown by thermal evaporation on pulsed laser deposited ZnO buffer layer. J Appl Phys 104:044906

    Article  Google Scholar 

  • Nakamura S (1998) The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 281:956–961

    Article  CAS  Google Scholar 

  • Nayak A, Banerjee HD (1999) X-ray photoelectron spectroscopy of zinc phosphide thin film. Appl Surf Sci 148:205–210

    Article  CAS  Google Scholar 

  • Ni YH, Hao HQ, Cao XF, Su S, Zhang YZ, Wei XW (2006) Preparation, characterization, and optical, electrochemical property research of CdS/PAM nanocomposites. J Phys Chem B 110:17347–17352

    Article  CAS  Google Scholar 

  • Ogata K, Koike K, Sasa S, Inoue M, Yano M (2008) X-ray analysis of ZnO nanorods grown by microwave irradiation heating on ZnO films. Appl Surf Sci 254:7708–7711

    Article  CAS  Google Scholar 

  • Ogata K, Koike K, Sasa S, Inoue M, Yano M (2009) Fabrication of ZnO nanorods on O-polar ZnO layers grown by molecular beam epitaxy and electrical characterization using conductive atomic force microscopy. Semicond Sci Tech 24:015006

    Article  Google Scholar 

  • Qian G, Nikl M, Bei J, Pejchal J, Baccaro S, Giorgi R, Cecilia A, Chen G (2007) Temperature dependence of photoluminescence in ZnO-containing glasses. Opt Mater 30:91–94

    Article  CAS  Google Scholar 

  • Routkevitch D, Bigioni T, Moskovits M, Xu JM (1996) Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. J Phys Chem 100:14037–14047

    Article  CAS  Google Scholar 

  • Shi L, Xu YM, Li Q (2009) Shape-selective synthesis and optical properties of highly ordered one-dimensional ZnS nanostructures. Cryst Growth Des 9:2214–2219

    Article  CAS  Google Scholar 

  • Tian ZRR, Voigt JA, Liu J, McKenzie B, McDermott MJ, Rodriguez MA, Konishi H, Xu HF (2003) Complex and oriented ZnO nanostructures. Nat Mater 2:821–826

    Article  CAS  Google Scholar 

  • Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mater 15:464–466

    Article  CAS  Google Scholar 

  • Wang M, Ye C-H, Zhang Y, Hua G-M, Wang H-X, Kong M-G, Zhang L-D (2006a) Synthesis of well-aligned ZnO nanorod arrays with high optical property via a low-temperature solution method. J Cryst Growth 291:334–339

    Article  CAS  Google Scholar 

  • Wang WZ, Zeng BQ, Yang J, Poudel B, Huang JY, Naughton MJ, Ren ZF (2006b) Aligned ultralong ZnO nanobelts and their enhanced field emission. Adv Mater 18:3275–3278

    Article  CAS  Google Scholar 

  • Warule SS, Chaudhari NS, Kale BB, More MA (2009) Novel sonochemical assisted hydrothermal approach towards the controllable synthesis of ZnO nanorods, nanocups and nanoneedles and their photocatalytic study. CrystEngComm 11:2776–2783

    Article  CAS  Google Scholar 

  • Yang PD, Yan HQ, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He RR, Choi H-J (2002) Controlled growth of ZnO nanowires and their optical properties. Adv Funct Mater 12:323–331

    Article  CAS  Google Scholar 

  • Yang HQ, Song YZ, Li L, Ma JH, Chen DC, Mai SL, Zhao H (2008) Large-scale growth of highly oriented ZnO nanorod arrays in the Zn-NH3·H2O hydrothermal system. Cryst Growth Des 8:1039–1043

    Article  CAS  Google Scholar 

  • Yin LW, Bando Y (2005) Semiconductor morphology: optimizing properties by tuning morphology. Nat Mater 4:883–884

    Article  CAS  Google Scholar 

  • Yu X-L, Song J-G, Fu Y-S, Xie Y, Song X, Sun J, Du X-W (2010) ZnS/ZnO heteronanostructure as photoanode to enhance the conversion efficiency of dye-sensitized solar cells. J Phys Chem C 114:2380–2384

    Article  CAS  Google Scholar 

  • Zalamai VV, Ursaki VV, Klingshirn C, Kalt H, Emelchenko GA, Redkin AN (2009) Lasing with guided modes in ZnO nanorods and nanowires. Appl Phys B 97:817–823

    Article  CAS  Google Scholar 

  • Zhang Y, Jia HB, Wang RM, Chen CP, Luo XH, Yu DP, Lee C (2003) Low-temperature growth and Raman scattering study of vertically aligned ZnO nanowires on Si substrate. Appl Phys Lett 83:4631–4633

    Article  CAS  Google Scholar 

  • Zhang HZ, Sun XC, Wang RM, Yu DP (2004) Growth and formation mechanism of c-oriented ZnO nanorod arrays deposited on glass. J Cryst Growth 269:464–471

    Article  CAS  Google Scholar 

  • Zhao FH, Li XY, Zheng J-G, Yang XF, Zhao FL, Wong KS, Wang J, Lin WJ, Wu MM, Su Q (2008) ZnO pine-nanotree arrays grown from facile metal chemical corrosion and oxidation. Chem Mater 20:1197–1199

    Article  CAS  Google Scholar 

  • Zhao FH, Zheng J-G, Yang XF, Li XY, Wang J, Zhao FL, Wong KS, Liang CL, Wu MM (2010) Complex ZnO nanotree arrays with tunable top, stem and branch structures. Nanoscale 2:1674–1683

    Article  CAS  Google Scholar 

  • Zheng Y-Z, Tao X, Wang L-X, Xu H, Hou Q, Zhou W-L, Chen J-F (2010) Novel ZnO-based film with double light-scattering layers as photoelectrodes for enhanced efficiency in dye-sensitized solar cells. Chem Mater 22:928–934

    Article  CAS  Google Scholar 

  • Zhou HJ, Wissinger M, Fallert J, Hauschild R, Stelzl F, Klingshirn C, Kalt H (2007) Ordered, uniform-sized ZnO nanolaser arrays. Appl Phys Lett 91:181112

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants through the National Research Foundation of Korea (NRF) (2011-0003074 and 2011-0001216). J.Y.K. acknowledges a BK21 scholarship as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du-Jeon Jang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7470 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JY., Jeong, H. & Jang, DJ. Hydrothermal fabrication of well-ordered ZnO nanowire arrays on Zn foil: room temperature ultraviolet nanolasers. J Nanopart Res 13, 6699–6706 (2011). https://doi.org/10.1007/s11051-011-0576-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0576-8

Keywords

Navigation