Skip to main content
Log in

Synthesis, properties and uses of ZnO nanorods: a mini review

  • Review
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) nanorods have been extensively investigated, owing to their extraordinary applications in numerous fields, spatially microchip technology, solar cells, sensors, photodetectors, photocatalysts and many others. Recently, using ZnO nanorods, as photocatalysts, are receiving increasing attention in environmental defense applications. This mini review summarizes some remarkable applications for ZnO nanorods. First, the various chemical and physical procedures that were used to produce ZnO nanorods are identified through symmetric matrices and heterogeneous structures, then the authors explain how to use these methods to produce ZnO nanorods. This mini review, also, discusses the applications of ZnO nanorods in many fields, especially in field release, emission properties, and electron transference. Last but not least, the appropriate conclusions for future research using ZnO nanorods have been successfully explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Reproduces from [109]

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pokropivny, V., Skorokhod, V.: Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng., C 27(5–8), 990–993 (2007)

    Article  CAS  Google Scholar 

  2. Su, B., Wu, Y., Jiang, L.: The art of aligning one-dimensional (1D) nanostructures. Chem. Soc. Rev. 41(23), 7832–7856 (2012)

    Article  CAS  Google Scholar 

  3. Li, B.L., et al.: Low-dimensional transition metal dichalcogenide nanostructures based sensors. Adv. Func. Mater. 26(39), 7034–7056 (2016)

    Article  CAS  Google Scholar 

  4. Ghassan, A.A., Mijan, N.-A., Taufiq-Yap, Y.H.: Nanomaterials: an overview of nanorods synthesis and optimization. In: Nanorods and Nanocomposites, Chapter 2, vol. 11, no. 11, pp. 8–33. IntechOpen (2020)

  5. Abdulrahman, A.F., et al.: Fabrication and Characterization of High-Quality UV Photodetectors Based ZnO Nanorods Using Traditional and Modified Chemical Bath Deposition Methods. Nanomaterials 11(3), 677 (2021)

    Article  CAS  Google Scholar 

  6. Lebepe, T.C., Parani, S., Oluwafemi, O.S.: Graphene oxide-coated gold nanorods: synthesis and applications. Nanomaterials 10(11), 2149 (2020)

    Article  CAS  Google Scholar 

  7. Pellas, V., et al.: Gold Nanorods for LSPR biosensing: synthesis, coating by silica, and bioanalytical applications. Biosensors 10(10), 146 (2020)

    Article  CAS  Google Scholar 

  8. Frascaroli, J., et al.: Resistive switching in high-density nanodevices fabricated by block copolymer self-assembly. ACS Nano 9(3), 2518–2529 (2015)

    Article  CAS  Google Scholar 

  9. Fried, J.P., et al.: Challenges in fabricating graphene nanodevices for electronic DNA sequencing. MRS Communications 8(3), 703–711 (2018)

    Article  CAS  Google Scholar 

  10. Euler, H.-C.R., et al.: A deep-learning approach to realizing functionality in nanoelectronic devices. Nat. Nanotechnol. 15(12), 992–998 (2020)

    Article  CAS  Google Scholar 

  11. Rajendran, J., et al.: Nano meets security: Exploring nanoelectronic devices for security applications. Proc. IEEE 103(5), 829–849 (2015)

    Article  Google Scholar 

  12. Yamai, I., Saito, H.: Vapor phase growth of alumina whiskers by hydrolysis of aluminum fluoride. J. Cryst. Growth 45, 511–516 (1978)

    Article  CAS  Google Scholar 

  13. Wagner, R.: Vapor-liquid-solid mechanism of Single crystal growth Appl. Phys. Lett 4, 89–90 (1964)

    CAS  Google Scholar 

  14. Klimovskaya, A., Ostrovskii, I., Ostrovskaya, A.: Influence of growth conditions on morphology, composition, and electrical properties of n-Si wires. Phys. Status Solidi (a) 153(2), 465–472 (1996)

    Article  CAS  Google Scholar 

  15. Okabe, T., Nakagawa, M.: Growth of α-Ag2S whiskers in a VLS system. J. Cryst. Growth 46(4), 504–510 (1979)

    Article  CAS  Google Scholar 

  16. Zhang, X., Wu, D., Geng, H.: Heterojunctions based on II-VI compound semiconductor one-dimensional nanostructures and their optoelectronic applications. Curr. Comput.-Aided Drug Des. 7(10), 307 (2017)

    Google Scholar 

  17. Liu, M., et al.: Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nat. Commun. 4(1), 1–8 (2013)

    Article  Google Scholar 

  18. Han, W., et al.: Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277(5330), 1287–1289 (1997)

    Article  CAS  Google Scholar 

  19. Wang, C., et al.: Synthesis of novel SbSI nanorods by a hydrothermal method. Inorg. Chem. Commun. 4(7), 339–341 (2001)

    Article  CAS  Google Scholar 

  20. Ma, D., et al.: Cu-In2S3 nanorod induced the growth of Cu&In co-doped multi-arm CdS hetero-phase junction to promote photocatalytic H2 evolution. Chem. Eng. J. 399, 125785 (2020)

    Article  CAS  Google Scholar 

  21. Labis, J.P., et al.: Designing zinc oxide nanostructures (nanoworms, nanoflowers, nanowalls, and nanorods) by pulsed laser ablation technique for gas-sensing application. J. Am. Ceram. Soc. 102(7), 4367–4375 (2019)

    Article  CAS  Google Scholar 

  22. Park, H., et al.: Synthesis of ultra-small palladium nanoparticles deposited on CdS nanorods by pulsed laser ablation in liquid: role of metal nanocrystal size in the photocatalytic hydrogen production. Chem. A Eur. J. 23(53), 13112–13119 (2017)

    Article  CAS  Google Scholar 

  23. Jiang, Y., et al.: Elemental solvothermal reaction to produce ternary semiconductor CuInE2 (E= S, Se) nanorods. Inorg. Chem. 39(14), 2964–2965 (2000)

    Article  CAS  Google Scholar 

  24. Wang, C., et al.: Preparation and Photoluminescence of CaS: Bi, CaS: Ag, CaS: Pb, and Sr1− x Ca x S Nanocrystallites. J. Electrochem. Soc. 150(3), G163 (2003)

    Article  CAS  Google Scholar 

  25. Ameen, S., et al.: Vertically aligned ZnO nanorods on hot filament chemical vapor deposition grown graphene oxide thin film substrate: solar energy conversion. ACS Appl. Mater. Interfaces. 4(8), 4405–4412 (2012)

    Article  CAS  Google Scholar 

  26. Murkute, P., et al.: Emerging material zinc magnesium oxide based nanorods: Growth process optimization and sensor application towards humidity detection. Sens. Actuators B Chem. 256, 204–216 (2018)

    Article  CAS  Google Scholar 

  27. Willander, M., et al.: Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnology.  20(33), 332001 (2009)

    Article  CAS  Google Scholar 

  28. Mydeen, S.S., et al.: Biosynthesis of ZnO nanoparticles through extract from Prosopis juliflora plant leaf: Antibacterial activities and a new approach by rust-induced photocatalysis. J. Saudi Chem. Soc. 24(5), 393–406 (2020)

    Article  CAS  Google Scholar 

  29. Li, X., et al.: Effects of free electrons and quantum confinement in ultrathin ZnO films: a comparison between undoped and Al-doped ZnO. Opt. Express 21(12), 14131–14138 (2013)

    Article  CAS  Google Scholar 

  30. Ding, M., et al.: One-dimensional zinc oxide nanomaterials for application in high-performance advanced optoelectronic devices. Curr. Comput.-Aided Drug Des. 8(5), 223 (2018)

    Google Scholar 

  31. Yildirim, O.A., Liu, Y., Petford-Long, A.K.: Synthesis of uniformly distributed single-and double-sided zinc oxide (ZnO) nanocombs. J. Cryst. Growth 430, 34–40 (2015)

    Article  CAS  Google Scholar 

  32. Senthilkumar, N., et al.: Synthesis of ZnO nanorods by one step microwave-assisted hydrothermal route for electronic device applications. J. Mater. Sci. Mater. Electron. 29(4), 2927–2938 (2018)

    Article  CAS  Google Scholar 

  33. Wang, Z.L.: Nanostructures of zinc oxide. Mater. Today 7(6), 26–33 (2004)

    Article  CAS  Google Scholar 

  34. Ghalandari, M., et al.: Applications of nanofluids containing carbon nanotubes in solar energy systems: a review. J. Mol. Liq. 313, 113476 (2020)

    Article  CAS  Google Scholar 

  35. Khairy, M., Naguib, E.M., Mohamed, M.M.: Enhancement of photocatalytic and sonophotocatalytic degradation of 4-nitrophenol by ZnO/graphene oxide and ZnO/carbon nanotube nanocomposites. J. Photochem. Photobiol. A Chem. 396, 112507 (2020)

    Article  CAS  Google Scholar 

  36. Gupta, S., et al.: Hybrid composite mats composed of amorphous carbon, zinc oxide nanorods and nickel zinc ferrite for tunable electromagnetic interference shielding. Compos. B Eng. 164, 447–457 (2019)

    Article  CAS  Google Scholar 

  37. Srivatsa, K., Chhikara, D., Kumar, M.S.: Synthesis of aligned ZnO nanorod array on silicon and sapphire substrates by thermal evaporation technique. J. Mater. Sci. Technol. 27(8), 701–706 (2011)

    Article  CAS  Google Scholar 

  38. Navale, Y., et al.: NO 2 Gas Sensor Based on ZnO Nanorods Synthesised by Thermal Evaporation Method, in Techno-Societal 2018, pp. 315–321. Springer (2020)

    Google Scholar 

  39. Chrissanthopoulos, A., et al.: Synthesis and characterization of ZnO/NiO p–n heterojunctions: ZnO nanorods grown on NiO thin film by thermal evaporation. Photon. Nanostruct.-Fundam. Appl. 9(2), 132–139 (2011)

    Article  Google Scholar 

  40. Li, Y., et al.: ZnO microcolumns originated from self-assembled nanorods. J. Mater. Sci. 43(5), 1711–1715 (2008)

    Article  CAS  Google Scholar 

  41. Quan, L.N., et al.: Nanowires for photonics. Chem. Rev. 119(15), 9153–9169 (2019)

    Article  CAS  Google Scholar 

  42. Baratto, C., et al.: On the alignment of ZnO nanowires by Langmuir-Blodgett technique for sensing application. Appl. Surf. Sci. 528, 146959 (2020)

    Article  CAS  Google Scholar 

  43. Gundiah, G., et al.: Carbothermal synthesis of the nanostructures of Al 2 O 3 and ZnO. Top. Catal. 24(1–4), 137–146 (2003)

    Article  CAS  Google Scholar 

  44. Kurbanov, S., et al.: Photoluminescence properties of ZnO nanorods synthesized by different methods. Semiconductors 52(7), 897–901 (2018)

    Article  CAS  Google Scholar 

  45. Khanlary, M.R., Vahedi, V., Reyhani, A.: Synthesis and characterization of ZnO nanowires by thermal oxidation of Zn thin films at various temperatures. Molecules 17(5), 5021–5029 (2012)

    Article  CAS  Google Scholar 

  46. Peng, X., Wickham, J., Alivisatos, A.: Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J. Am. Chem. Soc. 120(21), 5343–5344 (1998)

    Article  CAS  Google Scholar 

  47. Wang, X., Peng, Q., Li, Y.: Interface-mediated growth of monodispersed nanostructures. Acc. Chem. Res. 40(8), 635–643 (2007)

    Article  CAS  Google Scholar 

  48. Mei, T., Hu, Y.: Synthesis, self-assembly and optoelectronic properties of monodisperse ZnO quantum dots. In: Optoelectronic Devices and Properties, Chapter 11, pp. 215–240 (2011)

  49. Wang, D., et al.: Interfacial emission adjustment in ZnO quantum dots/p-GaN heterojunction light-emitting diodes. J. Phys. Chem. C 119(5), 2798–2803 (2015)

    Article  CAS  Google Scholar 

  50. Hao, Q.: Improved manufacturing processes for better materials properties—from quantum dots to bulk materials. ES Mater Manuf 8, 1–2 (2020)

    Google Scholar 

  51. Lan, S., et al.: Morphology and optical properties of zinc oxide thin films grown on Si (100) by metal-organic chemical vapor deposition. J. Mater. Sci.: Mater. Electron. 20(1), 441–445 (2009)

    CAS  Google Scholar 

  52. Jung, I.O., Park, J.Y., Kim, S.S.: Substrate dependent growth modes of ZnO nanorods grown by metalorganic chemical vapor deposition. J. Cryst. Growth 355(1), 78–83 (2012)

    Article  CAS  Google Scholar 

  53. Kim, D.C., et al.: ZnO nanorod arrays grown on glass substrates below glass transition temperature by metalorganic chemical vapor deposition. J. Mater. Sci.: Mater. Electron. 20(1), 245–248 (2009)

    CAS  Google Scholar 

  54. Kim, A.-Y., et al.: Effects of temperature on ZnO hybrids grown by metal-organic chemical vapor deposition. Mater. Res. Bull. 47(10), 2888–2890 (2012)

    Article  CAS  Google Scholar 

  55. Lei, P.-H., Cheng, C.-H.: Fabrication of Ag nanoparticle/ZnO thin films using dual-plasma-enhanced metal-organic chemical vapor deposition (DPEMOCVD) system incorporated with photoreduction method and its application. Mater. Sci. Semicond. Process. 57, 220–226 (2017)

    Article  CAS  Google Scholar 

  56. Swathi, S., et al.: Branched and unbranched ZnO nanorods grown via chemical vapor deposition for photoelectrochemical water-splitting applications. Ceram. Int. 47(7), 9785–9790 (2021)

    Article  CAS  Google Scholar 

  57. Kim, J.Y., et al.: Tailoring the surface area of ZnO nanorods for improved performance in glucose sensors. Sens. Actuators B Chem. 192, 216–220 (2014)

    Article  CAS  Google Scholar 

  58. Montenegro, D., et al.: Non-radiative recombination centres in catalyst-free ZnO nanorods grown by atmospheric-metal organic chemical vapour deposition. J. Phys. D Appl. Phys. 46(23), 235302 (2013)

    Article  CAS  Google Scholar 

  59. Ray, P.G., et al.: Surfactant and catalyst free facile synthesis of Al-doped ZnO nanorods–An approach towards fabrication of single nanorod electrical devices. Appl. Surf. Sci. 512, 145732 (2020)

    Article  CAS  Google Scholar 

  60. Mani, G.K., Rayappan, J.B.B.: Selective recognition of hydrogen sulfide using template and catalyst free grown ZnO nanorods. RSC Adv. 5(68), 54952–54962 (2015)

    Article  CAS  Google Scholar 

  61. Rusli, N.I., et al.: Growth of high-density zinc oxide nanorods on porous silicon by thermal evaporation. Materials 5(12), 2817–2832 (2012)

    Article  CAS  Google Scholar 

  62. Khan, W., et al.: Induced photonic response of ZnO nanorods grown on oxygen plasma-treated seed crystallites. Nanomaterials 8(6), 371 (2018)

    Article  CAS  Google Scholar 

  63. Park, W.I., et al.: Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett. 80(22), 4232–4234 (2002)

    Article  CAS  Google Scholar 

  64. Ocakoglu, K., et al.: Microwave-assisted hydrothermal synthesis and characterization of ZnO nanorods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 148, 362–368 (2015)

    Article  CAS  Google Scholar 

  65. Motevalizadeh, L., Heidary, Z., Abrishami, M.E.: Facile template-free hydrothermal synthesis and microstrain measurement of ZnO nanorods. Bull. Mater. Sci. 37(3), 397–405 (2014)

    Article  CAS  Google Scholar 

  66. Sutradhar, S., et al.: Effect of hydrothermal synthesis on physical property modulation and biological activity of ZnO nanorods. Mater. Res. Express 6(12),1250f7 (2020)

    Article  CAS  Google Scholar 

  67. Gan, Y.X., et al.: Hydrothermal synthesis of nanomaterials Hindawi. Springer (2020)

    Google Scholar 

  68. Ungula, J., Swart, H.: Study on the role of growth time on structural, morphological and optical properties of un-capped and L-cyst.-capped ZnO nanorods grown on a GZO seeded thin film layer from an aqueous solution. J. Alloys Compd. 821(459p), 153459 (2020)

    Article  CAS  Google Scholar 

  69. Vidya, C., et al.: Photo-assisted mineralisation of titan yellow dye using ZnO nanorods synthesised via environmental benign route. SN Appl. Sci. 2(4), 1–15 (2020)

    Article  CAS  Google Scholar 

  70. Farha, A.H., Al Naim, A.F., Mansour, S.A.: Thermal Degradation of Polystyrene (PS) Nanocomposites Loaded with Sol Gel-Synthesized ZnO Nanorods. Polymers 12(9), 1935 (2020)

    Article  CAS  Google Scholar 

  71. Yin, M., et al.: Zinc oxide quantum rods. J. Am. Chem. Soc. 126(20), 6206–6207 (2004)

    Article  CAS  Google Scholar 

  72. Stagon, S.P., Huang, H.: Syntheses and applications of small metallic nanorods from solution and physical vapor deposition. Nanotechnol. Rev. 2(3), 259–267 (2013)

    Article  CAS  Google Scholar 

  73. Moumen, A., et al.: One dimensional ZnO nanostructures: Growth and chemical sensing performances. Nanomaterials 10(10), 1940 (2020)

    Article  CAS  Google Scholar 

  74. Alvi, N., et al.: Influence of different growth environments on the luminescence properties of ZnO nanorods grown by the vapor–liquid–solid (VLS) method. Mater. Lett. 106, 158–163 (2013)

    Article  CAS  Google Scholar 

  75. Kim, D., Leem, J.-Y.: Catalyst-free synthesis of ZnO nanorods by thermal oxidation of Zn films at various temperatures and their characterization. J. Nanosci. Nanotechnol. 17(8), 5826–5829 (2017)

    Article  CAS  Google Scholar 

  76. Park, W.I., et al.: ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv. Mater. 14(24), 1841–1843 (2002)

    Article  CAS  Google Scholar 

  77. Goswami, L., et al.: Graphene quantum dot-sensitized ZnO-nanorod/GaN-nanotower heterostructure-based high-performance UV photodetectors. ACS Appl. Mater. Interfaces. 12(41), 47038–47047 (2020)

    Article  CAS  Google Scholar 

  78. Chang, J.S., et al.: Exploration of a novel Type II 1D-ZnO nanorods/BiVO4 heterojunction photocatalyst for water depollution. J. Ind. Eng. Chem. 83, 303–314 (2020)

    Article  CAS  Google Scholar 

  79. Bai, L., Mei, J.: Low amount of Au nanoparticles deposited ZnO nanorods heterojunction photocatalysts for efficient degradation of p-nitrophenol. J. Sol-Gel Sci. Technol. 94, 468–476 (2020)

    Article  CAS  Google Scholar 

  80. Lauhon, L.J., et al.: Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420(6911), 57–61 (2002)

    Article  CAS  Google Scholar 

  81. Gudiksen, M.S., et al.: Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415(6872), 617–620 (2002)

    Article  CAS  Google Scholar 

  82. Wu, Y., Fan, R., Yang, P.: Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2(2), 83–86 (2002)

    Article  CAS  Google Scholar 

  83. Björk, M., et al.: One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80(6), 1058–1060 (2002)

    Article  CAS  Google Scholar 

  84. Björk, M., et al.: Nanowire resonant tunneling diodes. Appl. Phys. Lett. 81(23), 4458–4460 (2002)

    Article  CAS  Google Scholar 

  85. Thelander, C., et al.: Single-electron transistors in heterostructure nanowires. Appl. Phys. Lett. 83(10), 2052–2054 (2003)

    Article  CAS  Google Scholar 

  86. Macaluso, R., et al.: Progress in violet light-emitting diodes based on ZnO/GaN heterojunction. Electronics 9(6), 991 (2020)

    Article  CAS  Google Scholar 

  87. Yusof, J.M., et al.: Effect of zinc oxide nucleation on flexible bio based carbon nanotube cotton via chemical bath deposition method. Microelectron. Eng. 234, 111439 (2020)

    Article  CAS  Google Scholar 

  88. Kovalenko, M.V., et al.: Prospects of nanoscience with nanocrystals. ACS Nano 9(2), 1012–1057 (2015)

    Article  CAS  Google Scholar 

  89. Park, W.I., et al.: Metal-ZnO heterostructure nanorods with an abrupt interface. Jpn. J. Appl. Phys. 41(11A), L1206 (2002)

    Article  CAS  Google Scholar 

  90. Jung, S.W., et al.: Fabrication and controlled magnetic properties of Ni/ZnO nanorod heterostructures. Adv. Mater. 15(16), 1358–1361 (2003)

    Article  CAS  Google Scholar 

  91. Theerthagiri, J., et al.: A review on ZnO nanostructured materials: energy, environmental and biological applications. Nanotechnology 30(39), 392001 (2019)

    Article  CAS  Google Scholar 

  92. Chaaya, A.A., et al.: Tuning optical properties of Al2O3/ZnO nanolaminates synthesized by atomic layer deposition. J. Phys. Chem. C 118(7), 3811–3819 (2014)

    Article  CAS  Google Scholar 

  93. Li, S., et al.: Interface engineering of high efficiency perovskite solar cells based on ZnO nanorods using atomic layer deposition. Nano Res. 10(3), 1092–1103 (2017)

    Article  CAS  Google Scholar 

  94. Romo-Garcia, F., et al.: Optoelectronic attenuation behavior of Al2O3/ZnO nanolaminates grown by Atomic Layer Deposition. Thin Solid Films 669, 419–424 (2019)

    Article  CAS  Google Scholar 

  95. Goldberger, J., et al.: Single-crystal gallium nitride nanotubes. Nature 422(6932), 599–602 (2003)

    Article  CAS  Google Scholar 

  96. An, S.J., et al.: Heteroepitaxal fabrication and structural characterizations of ultrafine GaN/ZnO coaxial nanorod heterostructures. Appl. Phys. Lett. 84(18), 3612–3614 (2004)

    Article  CAS  Google Scholar 

  97. Yoon, I.T., Cho, H.D.: Two-step preparation and characterization of ZnO Core–Si shell coaxial nanorods. Journal of Theoretical and Applied Physics 14(1), 9–16 (2020)

    Article  Google Scholar 

  98. Adam, V., Vaculovicova, M.: Nanomaterials for sample pretreatment prior to capillary electrophoretic analysis. Analyst 142(6), 849–857 (2017)

    Article  CAS  Google Scholar 

  99. Shen, J., et al.: Insight into the Ga/In flux ratio and crystallographic plane dependence of MBE self-assembled growth of InGaN nanorods on patterned sapphire substrates. Nanoscale 12(6), 4018–4029 (2020)

    Article  CAS  Google Scholar 

  100. Chu, Y.-L., et al.: Characteristics of gas sensors based on co-doped ZnO nanorod arrays. J. Electrochem. Soc. 167(11), 117503 (2020)

    Article  CAS  Google Scholar 

  101. Jen, Y.-J., et al.: Deposited ultra-thin titanium nitride nanorod array as a plasmonic near-perfect light absorber. Sci. Rep. 10(1), 1–12 (2020)

    Article  CAS  Google Scholar 

  102. Park, W.I., et al.: Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures. Adv. Mater. 15(6), 526–529 (2003)

    Article  CAS  Google Scholar 

  103. Parra, M.R., Haque, F.Z.: Structural and optical properties of poly-vinylpyrrolidone modified ZnO nanorods synthesized through simple hydrothermal process. Optik 125(17), 4629–4632 (2014)

    Article  CAS  Google Scholar 

  104. Kuang, D., et al.: Dual-ultraviolet wavelength photodetector based on facile method fabrication of ZnO/ZnMgO core/shell nanorod arrays. J. Alloys Compd. 860, 157917 (2021)

    Article  CAS  Google Scholar 

  105. Yatsui, T., et al.: Evaluation of the discrete energy levels of individual ZnO nanorodsingle-quantum-well structures using near-field ultraviolet photoluminescence spectroscopy. Appl. Phys. Lett. 85(5), 727–729 (2004)

    Article  CAS  Google Scholar 

  106. Ohtsu, M., et al.: Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields. IEEE J. Sel. Top. Quantum Electron. 8(4), 839–862 (2002)

    Article  CAS  Google Scholar 

  107. Kumar, S.G., Rao, K.K.: Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 5(5), 3306–3351 (2015)

    Article  CAS  Google Scholar 

  108. Wang, X., et al.: Large-scale synthesis of six-nanometer-wide ZnO nanobelts. J. Phys. Chem. B 108(26), 8773–8777 (2004)

    Article  CAS  Google Scholar 

  109. Park, W.I., et al.: Quantum confinement observed in ultrafine ZnO and ZnO/Zn/sub 0.8/Mg/sub 0.2/O coaxial nanorod heterostructures. In: 4th IEEE Conference on Nanotechnology, vol. 11, pp. 83–85 (2004) 

  110. Li, T., Goldberger, J.E.: Atomic-Scale Derivatives of Solid-State Materials. Chem. Mater. 27(10), 3549–3559 (2015)

    Article  CAS  Google Scholar 

  111. Sirkeli, V., Hartnagel, H.L.: ZnO-based terahertz quantum cascade lasers. Opto-Electron. Rev. 27(2), 119–122 (2019)

    Article  Google Scholar 

  112. Mondal, S., Mitra, P.: Preparation of cadmium-doped ZnO thin films by SILAR and their characterization. Bull. Mater. Sci. 35(5), 751–757 (2012)

    Article  CAS  Google Scholar 

  113. Geng, B., et al.: Synthesis and optical properties of S-doped ZnO nanowires. Appl. Phys. Lett. 82(26), 4791–4793 (2003)

    Article  CAS  Google Scholar 

  114. Bae, S.Y., Seo, H.W., Park, J.: Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition. J. Phys. Chem. B 108(17), 5206–5210 (2004)

    Article  CAS  Google Scholar 

  115. Wan, Q., et al.: Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires. Appl. Phys. Lett. 84(16), 3085–3087 (2004)

    Article  CAS  Google Scholar 

  116. Chang, Y., et al.: Synthesis, optical, and magnetic properties of diluted magnetic semiconductor Zn 1–x Mn x O nanowires via vapor phase growth. Appl. Phys. Lett. 83(19), 4020–4022 (2003)

    Article  CAS  Google Scholar 

  117. Ip, K., et al.: Ferromagnetism in Mn-and Co-implanted ZnO nanorods. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21(4), 1476–1481 (2003)

    Article  CAS  Google Scholar 

  118. Yan, M., et al.: Self-assembly of well-aligned gallium-doped zinc oxide nanorods. J. Appl. Phys. 94(8), 5240–5246 (2003)

    Article  CAS  Google Scholar 

  119. Gautam, S.K., et al.: Giant enhancement of the n-type conductivity in single phase p-type ZnO: N thin films by intentionally created defect clusters and pairs. Solid State Commun. 218, 20–24 (2015)

    Article  CAS  Google Scholar 

  120. Thakur, I., et al.: Facile synthesis of single crystalline n-/p-type ZnO nanorods by lithium substitution and their photoluminescence, electrochemical and photocatalytic properties. New J. Chem. 39(4), 2612–2619 (2015)

    Article  CAS  Google Scholar 

  121. Singh, B.K., Tripathi, S.: pn homojunction based on Bi doped p-type ZnO and undoped n-type ZnO for optoelectronic application in yellow-red region of visible spectrum. J. Lumin. 198, 427–432 (2018)

    Article  CAS  Google Scholar 

  122. Kwon, D.-K., Porte, Y., Myoung, J.-M.: Fabrication of ZnO nanorods p–n homojunction light-emitting diodes using Ag film as self-doping source for p-type ZnO nanorods. J. Phys. Chem. C 122(22), 11993–12001 (2018)

    Article  CAS  Google Scholar 

  123. Gu, P., Zhu, X., Yang, D.: Vertically aligned ZnO nanorods arrays grown by chemical bath deposition for ultraviolet photodetectors with high response performance. J. Alloys Compd. 815, 152346 (2020)

    Article  CAS  Google Scholar 

  124. Yatskiv, R., Grym, J., Verde, M.: Graphite/ZnO nanorods junction for ultraviolet photodetectors. Solid-State Electron. 105, 70–73 (2015)

    Article  CAS  Google Scholar 

  125. Zhou, H., et al.: Ultraviolet photodetectors based on ZnO nanorods-seed layer effect and metal oxide modifying layer effect. Nanoscale Res. Lett. 6(1), 1–6 (2011)

    Article  Google Scholar 

  126. Ji, Y., et al.: Ultraviolet photodetectors using hollow p-CuO nanospheres/n-ZnO nanorods with a pn junction structure. Sens. Actuators A Phys. 304, 111876 (2020)

    Article  CAS  Google Scholar 

  127. Huang, J., et al.: Visible light-activated room temperature NH3 sensor base on CuPc-loaded ZnO nanorods. Sens. Actuators B Chem. 327, 128911 (2021)

    Article  CAS  Google Scholar 

  128. Wang, H., et al.: N-pentanol sensor based on ZnO nanorods functionalized with Au catalysts. Sens. Actuators B Chem. 339, 129888 (2021)

    Article  CAS  Google Scholar 

  129. Rahimi, K., Yazdani, A.: Incremental photocatalytic reduction of graphene oxide on vertical ZnO nanorods for ultraviolet sensing. Mater. Lett. 262, 127078 (2020)

    Article  CAS  Google Scholar 

  130. Moon, S.H., et al.: van der Waals gap-inserted light-emitting p–n heterojunction of ZnO nanorods/graphene/p-GaN film. Curr. Appl. Phys. 20(2), 352–357 (2020)

    Article  Google Scholar 

  131. Mohammad, S.M., et al.: Ultraviolet electroluminescence from flowers-like n-ZnO nanorods/p-GaN light-emitting diode fabricated by modified chemical bath deposition. J. Lumin. 226, 117510 (2020)

    Article  CAS  Google Scholar 

  132. Abdelfatah, M., Ismail, W., El-Shaer, A.: Low cost inorganic white light emitting diode based on submicron ZnO rod arrays and electrodeposited Cu2O thin film. Mater. Sci. Semicond. Process. 81, 44–47 (2018)

    Article  CAS  Google Scholar 

  133. Ahmad, R., et al.: Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials. Adv. Coll. Interface. Sci. 270, 1–27 (2019)

    Article  CAS  Google Scholar 

  134. Sadighbayan, D., Hasanzadeh, M., Ghafar-Zadeh, E.: Biosensing based on field-effect transistors (FET): recent progress and challenges. TrAC Trends Anal. Chem. 133, 116067 (2020)

    Article  CAS  Google Scholar 

  135. Tang, C., et al., Facile synthesis and nanoscale related physical properties of core-shell structured CuO/ZnO nanorods on Si substrate. Appl. Surf. Sci. 509, 144903 (2020)

    Article  CAS  Google Scholar 

  136. Göktaş, S., Göktaş, A.: A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: a review. J. Alloys Compd. 863,158734 (2021)

    Article  CAS  Google Scholar 

  137. Sambath, K., et al.: Morphology controlled synthesis of ZnO nanostructures by varying pH. J. Mater. Sci.: Mater. Electron. 23(2), 431–436 (2012)

    CAS  Google Scholar 

  138. Sinha, R., Roy, N., Mandal, T.K.: Growth of carbon dot-decorated ZnO nanorods on a graphite-coated paper substrate to fabricate a flexible and self-powered schottky diode for UV detection. ACS Appl. Mater. Interfaces. 12(29), 33428–33438 (2020)

    Article  CAS  Google Scholar 

  139. Lord, A.M., et al.: Schottky contacts on polarity-controlled vertical ZnO nanorods. ACS Appl. Mater. Interfaces. 12(11), 13217–13228 (2020)

    Article  CAS  Google Scholar 

  140. Nam, G.-H., Baek, S.-H., Park, I.-K.: Growth of ZnO nanorods on graphite substrate and its application for Schottky diode. J. Alloy. Compd. 613, 37–41 (2014)

    Article  CAS  Google Scholar 

  141. Pramanik, S., et al.: Role of oxygen vacancies on the green photoluminescence of microwave-assisted grown ZnO nanorods. J. Alloys Compd. 849, 156684 (2020)

    Article  CAS  Google Scholar 

  142. Efafi, B., et al.: Improvement in photoluminescence behavior of well-aligned ZnO nanorods by optimization of thermodynamic parameters. Phys. B Condens. Matter 579, 411915 (2020)

    Article  CAS  Google Scholar 

  143. Maldonado-Arriola, J., Sánchez-Zeferino, R., Álvarez-Ramos, M.: Photoluminescent properties of ZnO nanorods films used to detect methanol contamination in tequila. Sensors. Actuators A Phys. 312, 112142 (2020)

    Article  CAS  Google Scholar 

  144. Tamashevski, A., et al.: Photoluminescent detection of human T-lymphoblastic cells by ZnO nanorods. Molecules 25(14), 3168 (2020)

    Article  CAS  Google Scholar 

  145. Galdámez-Martinez, A., et al.: Photoluminescence of ZnO nanowires: a review. Nanomaterials 10(5), 857 (2020)

    Article  CAS  Google Scholar 

  146. Park, W.I., et al.: Excitonic emissions observed in ZnO single crystal nanorods. Appl. Phys. Lett. 82(6), 964–966 (2003)

    Article  CAS  Google Scholar 

  147. Shohany, B.G., Zak, A.K.: Doped ZnO nanostructures with selected elements-Structural, morphology and optical properties: a review. Ceram. Int. 46(5), 5507–5520 (2020)

    Article  CAS  Google Scholar 

  148. Gherab, K., et al.: Fabrication and characterizations of Al nanoparticles doped ZnO nanostructures-based integrated electrochemical biosensor. J. Mark. Res. 9(1), 857–867 (2020)

    CAS  Google Scholar 

  149. Bhati, V.S., Hojamberdiev, M., Kumar, M.: Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Rep. 6, 46–62 (2020)

    Article  Google Scholar 

  150. Rehman, U., et al.: Modulation of secondary phases in hydrothermally grown zinc oxide nanostructures by varying the Cu dopant concentration for enhanced thermo power. J. Alloys Compd. 843, 156081 (2020)

    Article  CAS  Google Scholar 

  151. Tu, N., et al.: Effect of substrate temperature on structural and optical properties of ZnO nanostructures grown by thermal evaporation method. Phys. E 85, 174–179 (2017)

    Article  CAS  Google Scholar 

  152. Čížek, J., et al.: Origin of green luminescence in hydrothermally grown ZnO single crystals. Appl. Phys. Lett. 106(25), 251902 (2015)

    Article  CAS  Google Scholar 

  153. Huang, Z., et al.: Conversion mechanism of conductivity and properties of nitrogen implanted ZnO single crystals induced by post-annealing. J. Mater. Sci. Mater. Electron. 30(5), 4555–4561 (2019)

    Article  CAS  Google Scholar 

  154. Matsumoto, K., Kuriyama, K., Kushida, K.: Electrical and photoluminescence properties of carbon implanted ZnO bulk single crystals. Nucl. Instrum. Methods Phys. Res. Sect. B 267(8–9), 1568–1570 (2009)

    Article  CAS  Google Scholar 

  155. Richters, J.-P., et al.: Influence of polymer coating on the low-temperature photoluminescence properties of ZnO nanowires. Appl. Phys. Lett. 92(1), 011103 (2008)

    Article  CAS  Google Scholar 

  156. Liu, K., et al.: Photoluminescence characteristics of high quality ZnO nanowires and its enhancement by polymer covering. Appl. Phys. Lett. 96(2), 023111 (2010)

    Article  CAS  Google Scholar 

  157. Huang, M.H., et al.: Room-temperature ultraviolet nanowire nanolasers. Science 292(5523), 2001 (1897)

    Google Scholar 

  158. Zhang, X., et al.: Structure and optically pumped lasing from nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films. J. Appl. Phys. 92(6), 3293–3298 (2002)

    Article  CAS  Google Scholar 

  159. Choy, J.H., et al.: Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser. Adv. Mater. 15(22), 1911–1914 (2003)

    Article  CAS  Google Scholar 

  160. Yu, S., et al.: Random laser action in ZnO nanorod arrays embedded in ZnO epilayers. Appl. Phys. Lett. 84(17), 3241–3243 (2004)

    Article  CAS  Google Scholar 

  161. Lorenz, M., et al.: Cathodoluminescence of selected single ZnO nanowires on sapphire. Ann. Phys. 13(1–2), 39–42 (2004)

    Article  CAS  Google Scholar 

  162. Teng, F., et al.: Photoelectric detectors based on inorganic p-type semiconductor materials. Adv. Mater. 30(35), 1706262 (2018)

    Article  CAS  Google Scholar 

  163. Yu, J., et al.: Metal-free carbon materials for persulfate-based advanced oxidation process: Microstructure, property and tailoring. Progress Mater. Sci. 111, 100654 (2020)

    Article  CAS  Google Scholar 

  164. Kurilich, M.R., et al.: Comparative study of electron field emission from randomly-oriented and vertically-aligned carbon nanotubes synthesized on stainless steel substrates. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom 37(4), 041202 (2019)

    Google Scholar 

  165. Chen, B., et al.: Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites. Acta Mater. 140, 317–325 (2017)

    Article  CAS  Google Scholar 

  166. Lee, C.J., et al.: Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 81(19), 3648–3650 (2002)

    Article  CAS  Google Scholar 

  167. Park, W.I., Yi, G.C.: Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv. Mater. 16(1), 87–90 (2004)

    Article  CAS  Google Scholar 

  168. Kennedy, J., et al.: Synthesis and enhanced field emission of zinc oxide incorporated carbon nanotubes. Diam. Relat. Mater. 71, 79–84 (2017)

    Article  CAS  Google Scholar 

  169. Chikate, P.R., et al.: Spitzer shaped ZnO nanostructures for enhancement of field electron emission behaviors. RSC Adv. 8(38), 21664–21670 (2018)

    Article  CAS  Google Scholar 

  170. Young, S.-J., Liu, Y.-H., Chien, J.-T.: Improving field electron emission properties of ZnO nanosheets with Ag nanoparticles adsorbed by photochemical method. ACS Omega 3(7), 8135–8140 (2018)

    Article  CAS  Google Scholar 

  171. Dalvand, R., et al.: Well-aligned ZnO nanoneedle arrays grown on polycarbonate substrates via electric field-assisted chemical method. Mater. Lett. 146, 65–68 (2015)

    Article  CAS  Google Scholar 

  172. Li, S.Y., et al.: Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process. J. Appl. Phys. 95(7), 3711–3716 (2004)

    Article  CAS  Google Scholar 

  173. Pan, N., et al.: Tip-morphology-dependent field emission from ZnO nanorod arrays. Nanotechnology 21(22), 225707 (2010)

    Article  CAS  Google Scholar 

  174. Li, Y., Bando, Y., Golberg, D.: ZnO nanoneedles with tip surface perturbations: excellent field emitters. Appl. Phys. Lett. 84(18), 3603–3605 (2004)

    Article  CAS  Google Scholar 

  175. Xu, C., Sun, X.: Field emission from zinc oxide nanopins. Appl. Phys. Lett. 83(18), 3806–3808 (2003)

    Article  CAS  Google Scholar 

  176. Maiti, S., Pal, S., Chattopadhyay, K.K.: Recent advances in low temperature, solution processed morphology tailored ZnO nanoarchitectures for electron emission and photocatalysis applications. CrystEngComm 17(48), 9264–9295 (2015)

    Article  CAS  Google Scholar 

  177. Maiti, S., et al.: Ambient condition oxidation of zinc foil in supersaturated solution for shape tailored ZnO nanostructures: low cost candidates for efficient electron emitter and UV-detector. CrystEngComm 16(9), 1659–1668 (2014)

    Article  CAS  Google Scholar 

  178. Jaramillo-Cabanzo, D., et al.: One-dimensional nanomaterials in lithium-ion batteries. J. Phys. D Appl. Phys. 54(8), 083001 (2020)

    Article  CAS  Google Scholar 

  179. Jo, S., et al.: Field-emission studies on thin films of zinc oxide nanowires. Appl. Phys. Lett. 83(23), 4821–4823 (2003)

    Article  CAS  Google Scholar 

  180. Xu, C., Sun, X., Chen, B.: Field emission from gallium-doped zinc oxide nanofiber array. Appl. Phys. Lett. 84(9), 1540–1542 (2004)

    Article  CAS  Google Scholar 

  181. Yoo, J., Park, W.I., Yi, G.-C.: Electrical and optical characteristics of hydrogen-plasma treated ZnO nanoneedles. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 23(5), 1970–1974 (2005)

    Article  CAS  Google Scholar 

  182. Liu, Y., et al.: Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 117(20), 12893–12941 (2017)

    Article  CAS  Google Scholar 

  183. Wang, Z., et al.: Nanoionics-enabled memristive devices: strategies and materials for neuromorphic applications. Adv. Electron. Mater. 3(7), 1600510 (2017)

    Article  CAS  Google Scholar 

  184. Singh, P., et al.: Sensing performance of gas sensors fabricated from controllably grown ZnO-based nanorods on seed layers. J. Mater. Sci. 55(21), 8850–8860 (2020)

    Article  CAS  Google Scholar 

  185. Wang, J., et al.: Room-temperature gas sensors based on ZnO nanorod/Au hybrids: visible-light-modulated dual selectivity to NO2 and NH3. J. Hazard. Mater. 381, 120919 (2020)

    Article  CAS  Google Scholar 

  186. Kasapoğlu, A.E., et al.: The effect of the change in the amount of Sb doping in ZnO nanorods for hydrogen gas sensors. Int. J. Hydrogen Energy 46(41), 21715–21725 (2021)

    Article  CAS  Google Scholar 

  187. Zhao, S., et al.: Enhanced NO2 sensing performance of ZnO nanowires functionalized with ultra-fine In2O3 nanoparticles. Sens. Actuators B Chem. 308, 127729 (2020)

    Article  CAS  Google Scholar 

  188. Miao, J., Lin, J.Y.: Nanometer-thick films of aligned ZnO nanowires sensitized with Au nanoparticles for few-ppb-level acetylene detection. ACS Appl. Nano Mater. 3(9), 9174–9184 (2020)

    Article  CAS  Google Scholar 

  189. Gole, A., Murphy, C.J.: Biotin−streptavidin-induced aggregation of gold nanorods: tuning rod−rod orientation. Langmuir 21(23), 10756–10762 (2005)

    Article  CAS  Google Scholar 

  190. Husham, M., et al.: Synthesis of ZnO nanorods by microwave-assisted chemical-bath deposition for highly sensitive self-powered UV detection application. Sens. Actuators, A 263, 166–173 (2017)

    Article  CAS  Google Scholar 

  191. Hahm, J.-I.: Zinc oxide nanomaterials for biomedical fluorescence detection. J. Nanosci. Nanotechnol. 14(1), 475–486 (2014)

    Article  CAS  Google Scholar 

  192. Willander, M., Khun, K., Ibupoto, Z.H.: ZnO based potentiometric and amperometric nanosensors. J. Nanosci. Nanotechnol. 14(9), 6497–6508 (2014)

    Article  CAS  Google Scholar 

  193. Sun, X., et al.: Shape controllable synthesis of ZnO nanorod arrays via vapor phase growth. Solid State Commun. 129(12), 803–807 (2004)

    Article  CAS  Google Scholar 

  194. Ahn, S.E., et al.: Photoresponse of sol-gel-synthesized ZnO nanorods. Appl. Phys. Lett. 84(24), 5022–5024 (2004)

    Article  CAS  Google Scholar 

  195. Park, W.I., et al.: Schottky nanocontacts on ZnO nanorod arrays. Appl. Phys. Lett. 82(24), 4358–4360 (2003)

    Article  CAS  Google Scholar 

  196. Chang, H., et al.: Facile fabrication of self-assembled ZnO nanowire network channels and its gate-controlled UV detection. Nanoscale Res. Lett. 13(1), 1–9 (2018)

    Article  CAS  Google Scholar 

  197. Yang, Y., et al.: Transverse piezoelectric field-effect transistor based on single ZnO nanobelts. Phys. Chem. Chem. Phys. 12(39), 12415–12419 (2010)

    Article  CAS  Google Scholar 

  198. Park, W.I., et al.: Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors. Appl. Phys. Lett. 85(21), 5052–5054 (2004)

    Article  CAS  Google Scholar 

  199. Wang, H.-T.: Fabrication and Characterization of Zinc Oxide and Gallium Nitride Based Sensors. University of Florida (2008)

    Google Scholar 

  200. Abdulrahman, A.F., et al.: Effect of growth temperature on morphological, structural, and optical properties of ZnO nanorods using modified chemical bath deposition method. J. Electron. Mater. 50(3), 1482–1495 (2021)

    Article  CAS  Google Scholar 

  201. Costas, A., et al.: Photodetecting properties of single CuO–ZnO core–shell nanowires with p–n radial heterojunction. Sci. Rep. 10(1), 1–12 (2020)

    Article  CAS  Google Scholar 

  202. Wan, Q., et al.: Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84(18), 3654–3656 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Salahaddin University-Erbil, Tishk International University and Soran University for their unconditional supports. A sincere thank goes to Dr David M.W. Waswa at Tishk International University for his diligent proofreading of this manuscript.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azeez A. Barzinjy.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aspoukeh, P.K., Barzinjy, A.A. & Hamad, S.M. Synthesis, properties and uses of ZnO nanorods: a mini review. Int Nano Lett 12, 153–168 (2022). https://doi.org/10.1007/s40089-021-00349-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-021-00349-7

Keywords

Navigation