Skip to main content
Log in

Temperature dependence of optical properties of InAs quantum dots grown on GaAs(113)A and (115)A substrates

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We have investigated the temperature dependence of photoluminescence (PL) peak position of InAs self-assembled quantum dots (QDs) grown on GaAs(11N)A (N = 3, 5) substrates. The interband transition energy is calculated by the resolution of the 3D Schrödinger equation for a parallelepipedic InAs QD, with a width of about 8 nm and a height around 3 nm. Experimentally, it was found that the PL spectra quenches at about 160 K. In addition, the full width at half maximum (FWHM) has an abnormal evolution with varying temperature. The latter effect maybe due to the carrier repopulation between QDs. The disorientation of the GaAs substrate and the low width of terraces which was presented in the high index surfaces have an important contribution in the PL spectra. Despite the non-realist chosen shape of QD and the simplest adopted model, theoretical and experimental results revealed a clear agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdi ben Nasrallah S, Bouazra A, Poncet A, Said M (2010) Theoretical investigation of intersubband transition energies and oscillator strength in CdS/SiO2 quantum dots. Physica E 43:146–150

    Article  CAS  Google Scholar 

  • Baira M, Bouzaiene L, Sfaxi L, Maaref H, Marly O, Bru-Chevallier C (2009) Temperature dependence of optical properties of InAs/GaAs self-organized quantum dots. J Appl Phys 105:094322–094325

    Article  Google Scholar 

  • Boichuk VI, Bilynsky IV, Shakleina IO, Kogoutiouk I (2010) Dielectric mismatch in finite barrier cubic quantum dots. Physica E 43:161–166

    Article  CAS  Google Scholar 

  • Bouazra A, Abdi-Ben Nasrallah S, Poncet A, Said M (2010) Numerical simulation of a coupling effect on electronic states in quantum dots. Superlattices Microstruct 48:1–8

    Article  CAS  Google Scholar 

  • Bouzaïene L, Saidi F, Sfaxi L, Maaref H (2010) Temperature dependence of the optical properties of InAs quantum dots with bimodal size evolution grown on GaAs (115)A substrate. Physica B 405:744–747

    Article  Google Scholar 

  • Bouzaïene L, Sfaxi L, Baira M, Maaref H, Bru-Chevallier C (2011) Power density and temperature dependent multi-excited states in InAs/GaAs quantum dots. J Nanopart Res 13:257–262

    Article  Google Scholar 

  • Califano M, Harrison P (1999) Approximate methods for the solution of quantum wires and dots: connection rules between pyramidal, cuboidal, and cubic dots. J Appl Phys 86:5054–5059

    Article  CAS  Google Scholar 

  • Caridi EA, Stark JB (1992) Strain tensor elements for misfit‐strained [hhk]‐oriented cubic crystals. Appl Phys Lett 60:1441–1443

    Article  CAS  Google Scholar 

  • Caroff P, Paranhoen C, Platz C, Folliot H, Bertru N, Labbe C, Piron R, Homeyer E, Le Corre A, Loualiche S (2005) High-gain and low-threshold InAs quantum-dot lasers on InP. Appl Phys Lett 87:243107–243109

    Article  Google Scholar 

  • El-Moghraby D, Johnson RG, Harrison P (2003) The effect of inter-dot separation on the finite difference solution of vertically aligned coupled quantum dots. Comput Phys Commun 155:236–243

    Article  CAS  Google Scholar 

  • Godefroo S, Maes J, Hayne M, Mmoshchalkov VV, Henini M, Pulizzi F, Patane A, Eaves L (2004) Magnetophotoluminescence study of the influence of substrate orientation and growth interruption on the electronic properties of InAs/GaAs quantum dots. J Appl Phys 96:2535–2539

    Article  CAS  Google Scholar 

  • Gong Z, Niu ZC, Fang ZD (2006) Corrugated surfaces formed on GaAs(331)A substrates: the template for laterally ordered InGaAs nanowires. Nanotechnology 17:1140–1145

    Article  CAS  Google Scholar 

  • Grundmann M, Stier O, Bimberg D (1995) Excited states in self‐organized InAs/GaAs quantum dots: theory and experiment. Phys Rev B 52:11969–11971

    Article  CAS  Google Scholar 

  • Henini M, Bugajski M (2005) Advances in self-assembled semiconductor quantum dot lasers. Microelectron J 36:950–956

    Article  CAS  Google Scholar 

  • Hwang TM, Lin WW, Wang WC, Wang W (2004) Numerical simulation of three dimensional pyramid quantum dot. J Comput Phys 196:208–232

    Article  Google Scholar 

  • Lee HS, Lee JY, Kim TW, Lee DU, Choo DC, Jung M, Kim MD (2002) Microstructural and optical properties of InAs/GaAs quantum dots embedded in modulation-doped Al x Ga1−x As/GaAs heterostructures. J Appl Phys 91:5195–5199

    Article  CAS  Google Scholar 

  • Liang BL, Wang ZM, Sablon KA, Mazur YI, Salamo GJ (2007) Influence of GaAs substrate orientation on InAs quantum dots: surface morphology, critical thickness, and optical properties. Nanoscale Res Lett 2:609–613

    Article  CAS  Google Scholar 

  • Lüerben D, Bleher R, Kalt H (2000) High-precision determination of the temperature-dependent band-gap shrinkage due to the electron–phonon interaction in GaAs. Phys Rev B 61:15812–15816

    Article  Google Scholar 

  • Mazin JY, Gérard JM, Izraël A, Barrier D, Bastard G (1994) Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. Phys Rev Lett 73:716–719

    Article  Google Scholar 

  • Mlinar V, Peeters FM (2006) Influence of the substrate orientation on the electronic and optical properties of InAs/GaAs quantum dots. Appl Phys Lett 89:261910–261912

    Article  Google Scholar 

  • Sanguinetti S, Gurioli M, Grilli E, Guzzi M, Henini M (2000) Piezoelectric-induced quantum-confined Stark effect in self-assembled InAs quantum dots grown on (N11) GaAs substrates. Appl Phys Lett 77:1982–1984

    Article  CAS  Google Scholar 

  • Schmidbauer M, Seydmohamadi Sh, Grigoriev D, Wang ZM, Mazur YI, Schäfer P, Hanke M, Köhler R, Salamo GJ (2006) Controlling planar and vertical ordering in three-dimensional (In, Ga)As quantum dot lattices by GaAs surface orientation. Phys Rev Lett 96:66108–66111

    Article  CAS  Google Scholar 

  • Sheng W, Leburton JP (2002) Spontaneous localization in InAs/GaAs self-assembled quantum-dot molecules. Appl Phys Lett 81:4449–4451

    Article  CAS  Google Scholar 

  • Smirnov MB, Talalaev VG, Novikov BV, Sarangov SV, Zakharov ND, Werner P, Gösele U, Tomm JW, Cirlin GE (2010) Temperature dependent luminescence from quantum dot arrays: phonon-assisted line broadening versus carrier escape-induced narrowing. Phys Status Solidi B 247:347–352

    Article  CAS  Google Scholar 

  • Stier O, Grundmann M, Bimberg D (1999) Electronic and optical properties of strained quantum dots modeled by 8-band k.p theory. Phy Rev B 59:5688–5701

    Article  CAS  Google Scholar 

  • Stoleru VG, Pal D, Towe E (2002) Self-assembled (In, Ga)As/GaAs quantum-dot nanostructures: strain distribution and electronic structure. Physica E 15:131–152

    Article  CAS  Google Scholar 

  • Temko Y, Suzuki T, Jacobi K (2003) Shape and growth of InAs quantum dots on GaAs(113)A. Appl Phys Lett 82:2142–2144

    Article  CAS  Google Scholar 

  • Vaccaro PO, Tominaga K, Hosoda M, Fujita K, Watanabe T (1995) Quantum-confined stark shift due to piezoelectric effect in InGaAs/GaAs quantum wells grown on (111)A GaAs. Jpn J Appl Phys 34:1362–1366

    Article  CAS  Google Scholar 

  • Varshni YP (1967) Temperature dependence of the energy gap in semiconductors. Physica 34:149–154

    Article  CAS  Google Scholar 

  • Wang LW, Williamson AJ, Zunger A, Jiang H, Singh J (2000) Comparison of the k.p and direct diagonalization approaches to the electronic structure of InAs/GaAs quantum dots. Appl Phys Lett 76:339–341

    Article  CAS  Google Scholar 

  • Wei Z, Yu Z-Y, Liu Y-M (2010) Piezoelectric effects and electronic structures of InAs/GaAs quantum dots grown along (111) and (011) directions. Chin Phys B 19:067302–067306

    Article  Google Scholar 

  • Yang CS (2008) Quantum states of a hydrogenic donor impurity in a cubic quantum dot by the finite difference method. Microelectron J 39:1469–1471

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bouzaïene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennour, M., Bouzaïene, L., Saidi, F. et al. Temperature dependence of optical properties of InAs quantum dots grown on GaAs(113)A and (115)A substrates. J Nanopart Res 13, 6527–6535 (2011). https://doi.org/10.1007/s11051-011-0557-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0557-y

Keywords

Navigation