Skip to main content
Log in

Regularities of ion-beam-induced crystallization and properties of InAs-QD/GaAs(001) semiconductor nanoheterostructures

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A novel method of the ion-beam-induced crystallization of quantum-size semiconductor eterostructures has been proposed. Using atomic force (AFM) and transmission electron microscopy (TEM), the capacitance–voltage (CV) method, and photoluminescence (PL) measurements, we have studied the main regularities of ion-beam-induced crystallization and the properties of InAs quantum dots (QDs) on GaAs single crystal substrates with (001) crystallographic orientation as functions of temperature, ion current, and ion energies. It is shown that, in order to grow InAs hut structures, the optimal temperature range is from 500 to 550°C. An intense development of dome clusters is observed at higher temperatures. It is found that an increase in the ion current in an interval from 60 to 120 μA at a temperature of 500°C and an ion energy of 150 eV inconsiderably affects the average sizes of nanoislands. It is shown that, in an ion energy range from 150 to 200 eV and at a constant temperature of the process of 500°C and bam current of 120 μA, bands of stability of medium sizes (∼15 nm) and surface density (∼1011 cm–2) are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Moriarty, “Nanostructured materials,” Rep. Prog. Phys. 64 (3), 297 (2001).

    Article  Google Scholar 

  2. A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75nm broad spectrum of emission,” Opt. Lett. 32 (7), 793 (2007).

    Article  Google Scholar 

  3. M. V. Alfimov, A. A. Bagatur’yants, A. A. Safonov, A. V. Scherbinin, K. G. Vladimirov, S. A. Belousov, M. V. Bogdanova, I. A. Valuev, A. V. Deinega, Yu. E. Lozovik, and B. V. Potapkin, “Multiscale computer design of photonic crystal based materials for optical chemosensors,” Nanotechnol. Russ. 5 (3, 4), 250 (2010).

    Article  Google Scholar 

  4. J. Li, L. Chai, J. Shi, B. Liu, B. Xu, M. Hu, Y. Li, Q. Xing, C. Wang, A. B. Fedotov, and A. M. Zheltikov, “Efficient terahertz wave generation from GaP crystals pumped by chirp-controlled pulses from femtosecond photonic crystal fiber amplifier,” Appl. Phys. Lett. 104 (3), 031117 (2014).

    Article  Google Scholar 

  5. Zh. I. Alferov, V. M. Andreev, and V. D. Rumyantsev, “Solar photovoltaics: trends and prospects,” Semiconductors 38 (8), 899 (2004).

    Article  Google Scholar 

  6. A. Luque, A. Marti, and C. Stanley, “Understanding intermediate-band solar cells,” Nature Photon. 6 (3), 146 (2012).

    Article  Google Scholar 

  7. P. A. Troshin, D. K. Susarova, E. A. Khakina, A. A. Goryachev, V. F. Razumov, O. V. Borshchev, S. A. Ponomarenko, and N. S. Sariciftci, “Material solubility and molecular compatibility effects in the design of fullerene/polymer composites for organic bulk heterojunction solar cells,” J. Mater. Chem. 22 (35), 18433 (2012).

    Article  Google Scholar 

  8. M. V. Kharlamova, A. A. Eliseev, A. V. Lukashin, Y. D. Tretyakov, L. V. Yashina, A. A. Volykhov, V. S. Neudachina, M. M. Brzhezinskaya, and T. S. Zyubina, “Single-walled carbon nanotubes filled with nickel halogenides: atomic structure and doping effect,” Phys. Status Solidi B 249, 2328 (2012).

    Article  Google Scholar 

  9. S. Kitamura, M. Senshu, T. Katsuyama, Y. Hino, N. Ozaki, S. Ohkouchi, Y. Sugimoto, and R. A. Hogg, “Optical characterization of In-flushed InAs/GaAs quantum dots emitting a broadband spectrum with multiple peaks at ∼1 µm,” Nanoscale Res. Lett. 10, 231 (2015).

    Article  Google Scholar 

  10. V. V. Mamutin, V. M. Ustinov, J. Boetthcher, and H. Kuenzel, “MBE growth of 5 µm quantum cascade lasers,” Tech. Phys. Lett. 36, 408 (2010).

    Article  Google Scholar 

  11. S. Li, Q. Chen, S. Sun, Y. Li, Q. Zhu, J. Li, X. Wang, J. Han, J. Zhang, C. Chen, and Y. Fang, “InAs/GaAs quantum dots with wide-range tunable densities by simply varying V/III ratio using metal-organic chemical vapor deposition,” Nanoscale Res. Lett. 8, 367 (2013).

    Article  Google Scholar 

  12. K. D. Moiseev, Ya. A. Parkhomenko, A. V. Ankudinov, E. V. Gushchina, M. P. Mikhailova, A. N. Titkov, and Yu. P. Yakovlev, “InSb/InAs quantum dots grown by liquid phase epitaxy,” Tech. Phys. Lett. 33 (4), 295 (2007).

    Article  Google Scholar 

  13. V. C. Elarde, R. Rangarajan, J. J. Borchardt, and J. J. Coleman, “Room-temperature operation of patterned quantum-dot lasers fabricated by electron beam lithography and selective area metal-organic chemical vapor deposition,” Photon. Technol. Lett. 17 (5), 935 (2005).

    Article  Google Scholar 

  14. B. Eisenhawer, D. Zhang, R. Clavel, A. Berger, J. Michler, and S. Christiansen, “Growth of doped silicon nanowires by pulsed laser deposition and their analysis by electron beam induced current imaging,” Nanotecnology 22 (7), 075706 (2011).

    Article  Google Scholar 

  15. E. Krikorian and R. J. Sneed, “Epitaxial deposition of germanium by both sputtering and evaporation,” J. Appl. Phys. 37, 3665 (1966).

    Article  Google Scholar 

  16. N. E. Lee, G. Xue, and J. E. Greene, “Epitaxial Si(001) grown at 80–750 C by ion-beam sputter deposition: crystal growth, doping, and electronic properties,” J. Appl. Phys. 80, 769 (1996).

    Article  Google Scholar 

  17. L. N. Aleksandrov, R. N. Lovyagin, O. P. Pchelyakov, and S. I. Stenin, “Heteroepitaxy of germanium thin films on silicon by ion sputtering,” J. Cryst. Growth 24–25, 298 (1974).

    Article  Google Scholar 

  18. X. S. Wang, J. Brake, R. J. Pechman, and J. H. Weaver, “Effect of ion sputtering on Ge epitaxy on GaAs(110),” Appl. Phys. Lett. 68, 1660 (1996).

    Article  Google Scholar 

  19. T. Yoshihiro and I. Tadatugu, “Properties of GaAs1-xPx epitaxial films prepared by ion beam sputter deposition,” Electron. Commun. Jpn. 75 (12), 97 (1992).

    Article  Google Scholar 

  20. S. Facsko, T. Dekorsy, C. Trappe, and H. Kurz, “Selforganized quantum dot formation by ion sputtering,” Microelectron. Eng. 53, 245 (2000).

    Article  Google Scholar 

  21. A. V. Dvurechenskii, J. V. Smagina, R. Groetzschel, V.A. Zinovyev, V. A. Armbrister, P. L. Novikov, S. A. Teys, and A. K. Gutakovskii, “Ge/Si quantum dot nanostructures grown with low-energy ion beamassisted epitaxy,” Surf. Coat. Technol. 196, 25–29 (2005).

    Article  Google Scholar 

  22. S. N. Chebotarev, A. S. Pashchenko, L. S. Lunin, and V. A. Irkha, “Features in the formation of Ge/Si multilayer nanostructures under ion-beam-assisted crystallization,” Tech. Phys. Lett. 39, 726 (2013).

    Article  Google Scholar 

  23. L. S. Lunin, I. A. Sysoev, D. L. Alfimova, S. N. Chebotarev, and A. S. Pashchenko, “Photoluminescence of I-GaxIn1-xAs/n-GaAs heterostructures containing a random InAs quantum dot array,” Inorg. Mater. 47, 816 (2011).

    Article  Google Scholar 

  24. L. S. Lunin, S. N. Chebotarev, A. S. Pashchenko, and L. N. Bolobanova, “Ion beam deposition of photoactive nanolayers for silicon solar cells,” Inorg. Mater. 48, 439–444 (2012).

    Article  Google Scholar 

  25. L. S. Lunin, S. N. Chebotarev, and A. S. Pashchenko, “Structure of Ge nanoclusters grown on Si(001) by ion beam crystallization,” Inorg. Mater. 49, 435 (2013).

    Article  Google Scholar 

  26. L. S. Lunin, S. N. Chebotarev, A. S. Pashchenko, and S. A. Dudnikov, “Correlation between the size and photoluminescence spectrum of quantum dots in InAs-QD/GaAs,” J. Surf. Invest., X-Ray, Synchrotr. Neutron Tech. 7 (1), 36 (2013).

    Article  Google Scholar 

  27. P. Rabinzohn, G. Gautherin, B. Agius, and C. Cohen, “Cleaning of Si and GaAs crystal surfaces by ion bombardment in the 50–1500 eV range: influence of bombarding energy and sample temperature on damage and incorporation,” J. Electrochem. Soc. 131, 905 (1984).

    Article  Google Scholar 

  28. L. D. Pramatorova, E. B. Savova, G. M. Minchev, and M. G. Mihailov, “Preparation of GaAs substrates for MBE,” Cryst. Res. Technol. 23, 11 (1988).

    Article  Google Scholar 

  29. S. N. Chebotarev, A. S. Pashchenko, A. Williamson, L. S. Lunin, V. A. Irkha, and V. A. Gamidov, “Ion beam crystallization of InAs/GaAs(001) nanostructures,” Tech. Phys. Lett. 41 (7), 661 (2015).

    Article  Google Scholar 

  30. N. A. Berg and I. P. Soshnikov, “Sputtering of AlxGa1-xAs semiconductor targets by Ar+ ions with energies of 2–14 keV,” Tech. Phys. 42, 688 (1997).

    Article  Google Scholar 

  31. P. Sigmund, “Recollections of fifty years with sputtering,” Thin Solid Films 520, 6031 (2012).

    Article  Google Scholar 

  32. I. P. Soshnikov, Yu. A. Kudriavtsev, A. V. Lunev, and N. A. Bert, “Sputtering of III-V semiconductors under argon atom and ion bombardment,” Nucl. Instrum. Methods Phys. Res. B 127–128, 115 (1997).

    Article  Google Scholar 

  33. N. Matsunami, Y. Yamamura, H. Hikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimuzu, and H. Tawara, “Tables of sputtering yields,” At. Data Nucl. Data Tables 31, 1 (2002).

    Article  Google Scholar 

  34. V. N. Lozovskii, S. N. Chebotarev, V. A. Irkha, and G. V. Valov, “Formation and use of positioning marks in scanning probe microscopy,” Tech. Phys. Lett. 36 (8), 737 (2010).

    Article  Google Scholar 

  35. D. J. Bottomley, “The physical origin of InAs quantum dots on GaAs(001),” Appl. Phys. Lett. 72, 783 (1998).

    Article  Google Scholar 

  36. G. Costantini, A. Rastelli, C. Manzano, R. Songmuang, O. Z. Schmidt, and K. Kern, “Universal shapes of self-organized semiconductor quantum dots: striking similarities between InAs/GaAs(001) and Ge/Si(001),” Appl. Phys. Lett. 85 (23), 5673 (2004).

    Article  Google Scholar 

  37. P. N. Brunkov, A. Patane, A. Levin, L. Eaves, P. C. Main, Yu. G. Musikhin, B. V. Volovik, A. E. Zhukov, V. M. Ustinov, and S. G. Konnikov, “Photocurrent and capacitance spectroscopy of Schottky barrier structures incorporating InAs/GaAs quantum dots,” Phys. Rev. B 65 (8), 085326 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Chebotarev.

Additional information

Original Russian Text © S.N. Chebotarev, A.S. Pashchenko, L.S. Lunin, V.A. Irkha, 2016, published in Rossiiskie Nanotekhnologii, 2016, Vol. 11, Nos. 7–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chebotarev, S.N., Pashchenko, A.S., Lunin, L.S. et al. Regularities of ion-beam-induced crystallization and properties of InAs-QD/GaAs(001) semiconductor nanoheterostructures. Nanotechnol Russia 11, 435–443 (2016). https://doi.org/10.1134/S1995078016040030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078016040030

Navigation