Skip to main content
Log in

Mechanism of local stress release in armchair single-wall zinc oxide nanotube under tensile loading

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The deformation mechanism of zinc oxide (ZnO) nanotube has been first examined by molecular dynamics. The result demonstrated that ZnO nanotubes relax it excess strain via the phase transformation from an armchair structure to a fourfold-coordinated structure, then to a zigzag structure, which is started by a slip deformation. In contrast to carbon, silicon carbide, and boron nitride nanotubes, they relax it local stress via the transformation of the Stone–Wales transformation. After yielding, the 8-4 dislocation loops are found and the numbers of 8-4 dislocation loops grow up, which relax the tensile strain at the necking region and leads the work hardening. Finally, the nanotube is broken down by crack deformation at the interface between different phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An W, Wu XJ, Zeng XC (2008) Adsorption of O-2, H-2, CO, NH3, and NO2 on ZnO nanotube: A density functional theory study. J Phys Chem C 112:5747–5755

    Article  CAS  Google Scholar 

  • Chandra N, Namilae S, Shet C (2004) Local elastic properties of carbon nanotubes in the presence of Stone–Wales defects. Phys Rev B 69:094101

    Article  Google Scholar 

  • Chou HC, Rohatgi A, Jokerst NM, Kamra S, Stock SR, Lowrie SL, Ahrenkiel RK, Levi DH (1996) Approach toward high efficiency CdTe/CdS heterojunction solar cells. Mater Chem Phys 43:178–182

    Article  CAS  Google Scholar 

  • Chowdhury R, Adhikari S, Scarpa F (2010) Elasticity and piezoelectricity of zinc oxide nanostructure. Physica E 42:2036–2040

    Article  CAS  Google Scholar 

  • Chu XF, Jiang DL, Djurisic AB, Yu HL (2005) Gas-sensing properties of thick film based on ZnO nano-tetrapods. Chem Phys Lett 401:426–429

    Article  CAS  Google Scholar 

  • Chubachi N (1976) ZnO films for surface acoustooptic devices on nonpiezoelectric substrates. Proc IEEE 64:772–774

    Article  CAS  Google Scholar 

  • Das R, Ray S (2003) Zinc oxide—a transparent, conducting IR-reflector prepared by rf-magnetron sputtering. J Phys D 36:152–155

    Article  CAS  Google Scholar 

  • Dumitrică T, Yakobson BI (2005) Rate theory of yield in boron nitride nanotubes. Phys Rev B 72:035418

    Article  Google Scholar 

  • Erkoc S, Kokten H (2005) Structural and electronic properties of single-wall ZnO nanotubes. Physica E 28:162–170

    Article  CAS  Google Scholar 

  • Ferekides C, Britt J (1994) CdTe solar-cells with efficiencies over 15-percent. Sol Energy Mater Sol Cells 35:255–262

    Article  CAS  Google Scholar 

  • Fulati A, Ali SMU, Riaz M, Amin G, Nur O, Willander M (2009) Miniaturized pH sensors based on zinc oxide nanotubes/nanorods. Sensors 9:8911–8923

    Article  CAS  Google Scholar 

  • Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  Google Scholar 

  • Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899

    Article  CAS  Google Scholar 

  • Jing LQ, Wang BQ, Xin BF, Li SD, Shi KY, Cai WM, Fu HG (2004) Investigations on the surface modification of ZnO nanoparticle photocatalyst by depositing Pd. J Solid State Chem 177:4221–4227

    Article  CAS  Google Scholar 

  • Keis K, Magnusson E, Lindstrom H, Lindquist SE, Hagfeldt A (2002) A 5% efficient photo electrochemical solar cell based on nanostructured ZnO electrodes. Sol Energy Mater Sol Cells 73:51–58

    Article  Google Scholar 

  • Kong XH, Sun XM, Li XL, Li YD (2003) Catalytic growth of ZnO nanotubes. Mater Chem Phys 82:997–1001

    Article  CAS  Google Scholar 

  • Kong T, Chen Y, Ye YP, Zhang K, Wang ZX, Wang XP (2009) An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes. Sens Actuators B: Chem 138:344–350

    Article  Google Scholar 

  • Kulkarni AJ, Zhou M, Ke FJ (2005) Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology 16:2749–2756

    Article  CAS  Google Scholar 

  • Liao L, Lu HB, Li JC, He H, Wang DF, Fu DJ, Liu C, Zhang WF (2007) Size dependence of gas sensitivity of ZnO nanorods. J Phys Chem C 111:1900–1903

    Article  CAS  Google Scholar 

  • Liu P, She GW, Liao ZL, Wang Y, Wang ZZ, Shi WS, Zhang XH, Lee ST, Chen DM (2009) Observation of persistent photoconductance in single ZnO nanotube. Appl Phys Lett 94:063120

    Article  Google Scholar 

  • Mao Y, Zhong J, Chen Y (2008) First principles study of the band structure and dielectric function of (6,6) single-walled zinc oxide nanotube. Physica E 40:499–502

    Article  CAS  Google Scholar 

  • Moon W, Hwang H (2008) Atomistic study of structures and elastic properties of single crystalline ZnO nanotubes. Nanotechnology 19:225703

    Article  Google Scholar 

  • Nardelli MB, Yakobson BI, Bernholc J (1998a) Brittle and ductile behavior in carbon nanotubes. Phys Rev Lett 81:4656

    Article  CAS  Google Scholar 

  • Nardelli MB, Yakobson BI, Bernholc J (1998b) Mechanism of strain release in carbon nanotubes. Phys Rev B 57:R4277

    Article  Google Scholar 

  • Niemegeers A, Burgelman M (1997) Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells. J Appl Phys 81:2881–2886

    Article  CAS  Google Scholar 

  • Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511

    Article  Google Scholar 

  • Qin Y, Wang XD, Wang ZL (2008) Microfibre-nanowire hybrid structure for energy scavenging. Nature 451:809–813

    Article  CAS  Google Scholar 

  • Rao BB (2000) Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour. Mater Chem Phys 64:62–65

    Article  CAS  Google Scholar 

  • Raymand D, Duin ACTv, Baudin M, Hermannson K (2008) A reactive force field (ReaxFF) for zinc oxide. Surf Sci 602:1020–1031

    Article  CAS  Google Scholar 

  • Rodriguez JA, Jirsak T, Dvorak J, Sambasivan S, Fischer D (2000) Reaction of NO2 with Zn and ZnO: photoemission, XANES, and density functional studies on the formation of NO3. J Phys Chem B 104:319–328

    Article  CAS  Google Scholar 

  • Sberveglieri G, Groppelli S, Nelli P, Tintinelli A, Giunta G (1995) A novel method for the preparation of NH3 sensors based on ZnO-In thin-films. Sens Actuators B: Chem 25:588–590

    Article  Google Scholar 

  • Sebastian PJ, Ocampo M (1996) A photodetector based on ZnCdS nanoparticles in a CdS matrix formed by screen printing and sintering of CdS and ZnCl2. Sol Energy Mater Sol Cells 44:1–10

    Article  CAS  Google Scholar 

  • Sun XW, Chu YD, Song T, Liu ZJ, Zhang L, Wang XG, Liu YX, Chen QF (2007) Application of a shell model in molecular dynamics simulation to ZnO with zinc-blende cubic structure. Solid State Commun 142:15–19

    Article  CAS  Google Scholar 

  • Tien LC, Sadik PW, Norton DP, Voss LF, Pearton SJ, Wang HT, Kang BS, Ren F, Jun J, Lin J (2005) Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods. Appl Phys Lett 87:3

    Google Scholar 

  • Touskova J, Kindl D, Tousek J (1997) Preparation and characterization of CdS/CdTe thin film solar cells. Thin Solid Films 293:272–276

    Article  CAS  Google Scholar 

  • Wang ZL, Song JH (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246

    Article  CAS  Google Scholar 

  • Wang RM, Xing YJ, Xu J, Yu DP (2003) Fabrication and microstructure analysis on zinc oxide nanotubes. New J Phys 5:115

    Article  Google Scholar 

  • Wang B, Nagase S, Zhao J, Wang G (2007) The stability and electronic structure of single-walled ZnO nanotubes by density functional theory. Nanotechnology 18:6

    CAS  Google Scholar 

  • Weng MH, Ju SP, Wu WS (2009) The collective motion of carbon atoms in a (10,10) single wall carbon nanotube under axial tensile strain. J Appl Phys 106:063504

    Article  Google Scholar 

  • Xu JQ, Pan QY, Shun YA, Tian ZZ (2000) Grain size control and gas sensing properties of ZnO gas sensor. Sens Actuators B Chem 66:277–279

    Article  Google Scholar 

  • Xu H, Zhang RQ, Zhang XH, Rosa AL, Frauenheim T (2007) Structural and electronic properties of ZnO nanotubes from density functional calculations. Nanotechnology 18:6

    Google Scholar 

  • Yakobson BI (1998) Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes. Appl Phys Lett 72:918

    Article  CAS  Google Scholar 

  • Yuan PF, Ding ZJ, Ju X (2008) Theoretical study on structural and elastic properties of ZnO nanotubes. Chin Phys Lett 25:1030–1033

    Article  CAS  Google Scholar 

  • Zhang Y, Huang H (2008) Stability of single-wall silicon carbide nanotubes—molecular dynamics simulations. Comput Mater Sci 43:664

    Article  CAS  Google Scholar 

  • Zhou Z, Li Y, Liu L, Chen Y, Zhang SB, Chen Z (2008) Size- and surface-dependent stability, electronic properties, and potential as chemical sensors: computational studies on one-dimensional ZnO nanostructures. J Phys Chem C 112:13926–13931

    Article  CAS  Google Scholar 

  • Zhu ZG, Chutia A, Sahnoun R, Koyama M, Tsuboi H, Hatakeyama N, Endou A, Takaba H, Kubo M, Del Carpio CA, Miyamoto A (2008) Theoretical study on electronic and electrical properties of nanostructural ZnO. Jpn J Appl Phys 47:2999–3006

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank (1) the National Science Council of Taiwan, under Grant No. NSC99-2628-E-110-004- and NSC99-2911-I-110-512 and (2) the National Center for High-performance Computing, Taiwan, for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-Pon Ju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, WJ., Chang, JG., Ju, SP. et al. Mechanism of local stress release in armchair single-wall zinc oxide nanotube under tensile loading. J Nanopart Res 13, 4749–4756 (2011). https://doi.org/10.1007/s11051-011-0445-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0445-5

Keywords

Navigation