Skip to main content
Log in

Effect of Stone–Wales defects on the mechanical behavior of boron nitride nanotubes

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The transversely isotropic response of pristine as well as defective boron nitride nanotubes (BNNTs) containing Stone–Wales (SW) defects was comprehensively studied via molecular dynamic simulations with a three-body Tersoff force field. The elastic properties and the failure behavior of BNNTs were studied under the transversely isotropic loading conditions, namely uniaxial tension, twisting moment, in-plane shear and in-plane biaxial tension. The effect of chirality, diameter and SW defect density was taken into consideration. The failure mechanism of BNNTs under each loading condition was explained in detail. Our study reveals that the elastic moduli of zigzag BNNTs are higher than for armchair tubes and decrease as the diameter of the tube increases. The effect of SW defects is found to be higher on the elastic properties of smaller diameter BNNTs than for larger diameter tubes, regardless of chirality. The higher defect density reduces the axial Young’s modulus, shear, plane strain bulk and in-plane shear moduli by 11%, 18%, 9% and 7%, respectively. The SW defects affect the (1) longitudinal shear moduli of BNNTs more profoundly irrespective of chirality and (2) the mechanical behavior of zigzag BNNTs stronger compared to armchair ones. It is also found that the mechanical properties of BNNTs are functions of chirality and diameter, especially for small diameter tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rubio, A., Corkill, J.L., Cohen, M.L.: Theory of graphitic boron nitride nanotubes. Phys. Rev. B. 49, 5081–5084 (1994)

    Google Scholar 

  2. Chen, Y., Zou, J., Campbell, S.J., Caer, G.Le: Boron nitride nanotubes: pronounced resistance to oxidation. Appl. Phys. Lett. 84, 2430–2432 (2004)

    Google Scholar 

  3. Blase, X., Rubio, A., Louie, S.G., Cohen, M.L.: Stability and band gap constancy of boron nitride nanotubes. EPL 28, 335–340 (1994)

    Google Scholar 

  4. Choyal, V., Choyal, V.K., Kundalwal, S.I.: Effect of atom vacancies on elastic and electronic properties of transversely isotropic boron nitride nanotubes: a comprehensive computational study. Comput. Mater. Sci. 156, 332–345 (2019)

    Google Scholar 

  5. Verma, V., Jindal, V.K., Dharamvir, K.: Elastic moduli of a boron nitride nanotube. Nanotechnology 18, 435711 (2007)

    Google Scholar 

  6. Mortazavi, B., Rémond, Y.: Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations. Phys. E Low Dimens. Syst. Nanostruct. 44, 1846–1852 (2012)

    Google Scholar 

  7. Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer (Guildf) 70, 149–160 (2015)

    Google Scholar 

  8. Qi, J., Qian, X., Qi, L., Feng, J., Shi, D., Li, J.: Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons. Nano Lett. 12, 1224–1228 (2012)

    Google Scholar 

  9. Zobelli, A., Ewels, C.P., Gloter, A., Seifert, G., Stephan, O., Csillag, S., Colliex, C.: Defective structure of BN nanotubes: from single vacancies to dislocation lines. Nano Lett. 6, 1955–1960 (2006)

    Google Scholar 

  10. Dumitrica, T., Yakobson, B.I.: Rate theory of yield in boron nitride nanotubes. Phys. Rev. B Condens. Matter Mater. Phys. 72, 1–5 (2005)

    Google Scholar 

  11. Schmidt, T.M., Baierle, R.J., Piquini, P., Fazzio, A.: Theoretical study of native defects in BN nanotubes. Phys. Rev. B 67, 1–4 (2003)

    Google Scholar 

  12. Song, J., Jiang, H., Wu, J., Huang, Y., Hwang, K.C.: Stone–Wales transformation in boron nitride nanotubes. Scr. Mater. 57, 571–574 (2007)

    Google Scholar 

  13. Tian, Y., Xu, B., Yu, D., Ma, Y., Wang, Y., Jiang, Y., Hu, W., Tang, C., Gao, Y., Luo, K., Zhao, Z., Wang, L.M., Wen, B., He, J., Liu, Z.: Ultrahard nanotwinned cubic boron nitride. Nature 493, 385–388 (2013)

    Google Scholar 

  14. Huang, Q., Yu, D., Xu, B., Hu, W., Ma, Y., Wang, Y., Zhao, Z., Wen, B., He, J., Liu, Z., Tian, Y.: Nanotwinned diamond with unprecedented hardness and stability. Nature 510, 250–253 (2014)

    Google Scholar 

  15. Kundalwal, S.I., Meguid, S.A., Weng, G.J.: Strain gradient polarization in graphene. Carbon N. Y. 117, 462–472 (2017)

    Google Scholar 

  16. Parvaneh, V., Shariati, M.: Effect of defects and loading on prediction of Young’s modulus of SWCNTs. Acta Mech. 216, 281–289 (2011)

    MATH  Google Scholar 

  17. Kundalwal, S.I., Choyal, V.: Transversely isotropic elastic properties of carbon nanotubes containing vacancy defects using MD. Acta Mech. 229, 2571–2584 (2018)

    Google Scholar 

  18. Kothari, R., Kundalwal, S.I., Sahu, S.K.: Transversely isotropic thermal properties of carbon nanotubes containing vacancies. Acta Mech. 229, 2787–2800 (2018)

    Google Scholar 

  19. Lu, K., Lu, L., Suresh, S.: Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science (2009). https://doi.org/10.1126/science.1159610

    Article  Google Scholar 

  20. Song, X., Hu, J., Zeng, H.: Two-dimensional semiconductors: recent progress and future perspectives. J. Mater. Chem. C 1, 2952–2969 (2013)

    Google Scholar 

  21. Wu, X., Yang, J., Hou, J.G., Zhu, Q.: Defects-enhanced dissociation of \(\text{ H}_{2}\) on boron nitride nanotubes. J. Chem. Phys. 124, 0–5 (2006)

    Google Scholar 

  22. Li, Y., Zhou, Z., Golberg, D., Bando, Y., Rague, P.Von: Stone–Wales defects in single-walled boron nitride nanotubes : formation energies, electronic structures, and reactivity. J. Phys. Chem. C 112, 1365–1370 (2008)

    Google Scholar 

  23. Lehtinen, O., Dumur, E., Kotakoski, J., Krasheninnikov, A.V., Nordlund, K., Keinonen, J.: Production of defects in hexagonal boron nitride monolayer under ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269, 1327–1331 (2011)

    Google Scholar 

  24. Griebel, M., Hamaekers, J., Heber, F.: A molecular dynamics study on the impact of defects and functionalization on the Young modulus of boron-nitride nanotubes. Comput. Mater. Sci. 45, 1097–1103 (2009)

    Google Scholar 

  25. Ebrahimi-Nejad, S., Shokuhfar, A., Hosseini-Sadegh, A., Zare-Shahabadi, A.: Effects of structural defects on the compressive buckling of boron nitride nanotubes. Phys. E Low Dimens. Syst. Nanostruct. 48, 53–60 (2013)

    Google Scholar 

  26. Sarma, J.V.N., Group, M., Chowdhury, R., Jayaganthan, R., Scarpa, F.: Atomistic studies on tensile mechanics of BN nanotubes in the presence of defects. Int J Nanosci 13, 1–9 (2014)

    Google Scholar 

  27. Anoop Krishnan, N.M., Ghosh, D.: Defect induced plasticity and failure mechanism of boron nitride nanotubes under tension. J. Appl. Phys. 116, 044313 (2014)

    Google Scholar 

  28. Roohi, H., Jahantab, M., Yakta, M.: Effect of the Stone–Wales (SW) defect on the response of BNNT to axial tension and compression: a quantum chemical study. Struct. Chem. 26, 11–22 (2015)

    Google Scholar 

  29. Zeighampour, H., Tadi Beni, Y.: Buckling analysis of boron nitride nanotube with and without defect using molecular dynamic simulation. Mol. Simul. 46, 1–10 (2019)

    Google Scholar 

  30. Aliofkhazraei, M., Ali, N., Milne, W.I., William, I., Ozkan, C.S., Mitura, S., Gervasoni, J.L.: Graphene Science Handbook. Mechanical and Chemical Properties, vol. 297. CRC Press, Boca Raton (2016)

    Google Scholar 

  31. Azevedo, S., Rosas, A., MacHado, M., Kaschny, J.R., Chacham, H.: Effects of deformation on the electronic properties of B-C-N nanotubes. J. Solid State Chem. 197, 254–260 (2013)

    Google Scholar 

  32. Kudin, K.N., Scuseria, G.E., Yakobson, B.I.: BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B Condens. Matter Mater. Phys. 64, 1–10 (2001)

    Google Scholar 

  33. Bettinger, H.F., Dumitrică, T., Scuseria, G.E., Yakobson, B.I.: Mechanically induced defects and strength of BN nanotubes. Phys. Rev. B Condens. Matter Mater. Phys. 65, 1–4 (2002)

    Google Scholar 

  34. Song, J., Wu, J., Huang, Y., Hwang, K.C.: Continuum modeling of boron nitride nanotubes. Nanotechnology 19, 445705 (2008)

    Google Scholar 

  35. Ansari, R., Mirnezhad, M., Sahmani, S.: Prediction of chirality- and size-dependent elastic properties of single-walled boron nitride nanotubes based on an accurate molecular mechanics model. Superlattices Microstruct. 80, 196–205 (2015)

    Google Scholar 

  36. Li, C., Chou, T.-W.: Static and dynamic properties of single-walled boron nitride nanotubes. J. Nanosci. Nanotechnol. 6, 54–60 (2006)

    Google Scholar 

  37. Santosh, M., Maiti, P., Sood, A.K.: Elastic properties of boron nitride nanotubes and their comparison with carbon nanotubes. J. Nanosci. Nanotechnol. 9, 5425–5430 (2009)

    Google Scholar 

  38. Choyal, V., Choyal, V.K., Kundalwal, S.I.: Transversely isotropic elastic properties of vacancy defected boron nitride nanotubes using molecular dynamics simulations. In: 2018 IEEE 13th Nanotechnology Materials and Devices Conference, pp. 1–4 (2018)

  39. Li, L., Chen, Y., Stachurski, Z.H.: Progress in natural science: materials international boron nitride nanotube reinforced polyurethane composites. Prog. Nat. Sci. Mater. Int. 23, 170–173 (2013)

    Google Scholar 

  40. Trivedi, S., Sharma, S.C., Harsha, S.P.: Evaluations of young’ s modulus of boron nitride nanotube reinforced nano-composites. Procedia Mater. Sci. 6, 1899–1905 (2014)

    Google Scholar 

  41. Gao, C., Feng, P., Peng, S., Shuai, C.: Carbon nanotubes, graphene and boron nitride nanotubes reinforced bioactive ceramics for bone repair. Acta Biomater. 61, 1–20 (2017)

    Google Scholar 

  42. Zhang, J., Peng, X.: Superior interfacial mechanical properties of boron nitride-carbon nanotube reinforced nanocomposites: a molecular dynamics study. Mater. Chem. Phys. 198, 250–257 (2017)

    Google Scholar 

  43. Cong, Z., Lee, S.: Study of mechanical behavior of BNNT-reinforced aluminum composites using molecular dynamics simulations. Compos. Struct. 194, 80–86 (2018)

    Google Scholar 

  44. Plimpton, S.J.: Computational Limits of Classical Molecular Dynamics Simulations 1 Introduction 2 Parallel MD. LAMMPS, Sandia Natl. Lab, pp. 1–8 (1995)

  45. Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B. 37, 6991–7000 (1988)

    Google Scholar 

  46. Kinaci, A., Haskins, J.B., Sevik, C., ÇagIn, T.: Thermal conductivity of BN-C nanostructures. Phys. Rev. B Condens. Matter Mater. Phys. 86, 1–8 (2012)

    Google Scholar 

  47. Bian, L., Gao, M.: Nanomechanics model for properties of carbon nanotubes. Acta Mech. 229, 4521–4538 (2018)

    MathSciNet  Google Scholar 

  48. Shen, L., Li, J.: Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B. 69, 045414 (2004)

    Google Scholar 

  49. Wernik, J.M., Meguid, S.A.: Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes. Acta Mech. 212, 167–179 (2010)

    MATH  Google Scholar 

  50. Dewapriya, M.A.N., Rajapakse, R.K.N.D.: Molecular dynamics simulations and continuum modeling of temperature and strain rate dependent fracture strength of graphene with vacancy defects. J. Appl. Mech. Trans. ASME 81, 1–9 (2014)

    Google Scholar 

  51. Moon, W.H., Hwang, H.J.: Theoretical study of defects of BN nanotubes: a molecular-mechanics study. Phys. E Low Dimens. Syst. Nanostruct. 28, 419–422 (2005)

    Google Scholar 

  52. Azadi, S., Moradian, R., Shafaee, A.M.: The effect of Stone–Wales defect orientations on the electronic properties of single-walled carbon nanotubes. Comput. Mater. Sci. 49, 699–703 (2010)

    Google Scholar 

  53. Xiao, J.R., Gama, B.A., Gillespie, J.W.: An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 42, 3075–3092 (2005)

    MATH  Google Scholar 

  54. Genoese, A., Genoese, A., Salerno, G.: On the nanoscale behaviour of single-wall C, BN and SiC nanotubes. Acta Mech. 230, 1105–1128 (2019)

    MathSciNet  MATH  Google Scholar 

  55. Kundalwal, S.I.: Review on micromechanics of nano- and micro-fiber reinforced composites. Polym. Compos. 39, 4243–4274 (2017)

    Google Scholar 

  56. Wang, H., Ding, N., Zhao, X., Wu, C.L.: Defective boron nitride nanotubes: mechanical properties, electronic structures and failure behaviors. J. Phys. D Appl. Phys. 51, 125303 (2018)

    Google Scholar 

  57. Nguyen, D.T.: The size effect in mechanics properties of boron nitride nanotube under tension. Vietnam J. Sci. Technol. 55, 475–483 (2017)

    Google Scholar 

Download references

Acknowledgements

The work was jointly supported by the Indian Institute of Technology Indore and Science Engineering Research Board (SERB), Department of Science and Technology, Government of India. S.I.K. acknowledges the generous support of the SERB Early Career Research Award Grant (ECR/2017/001863).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kundalwal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choyal, V., Kundalwal, S.I. Effect of Stone–Wales defects on the mechanical behavior of boron nitride nanotubes. Acta Mech 231, 4003–4018 (2020). https://doi.org/10.1007/s00707-020-02748-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02748-x

Navigation