Skip to main content
Log in

Effect of vacancy defects on tensile properties of CNTs

  • Technology and Application
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs), as one-dimensional nanomaterials, exhibit extraordinary mechanical, electrical, and chemical properties. In this research endeavor, atomic models of armchair CNTs (7, 7) and zigzag CNTs (12, 0) with the radii of 9.49 Å and 9.39 Å, respectively, and the lengths of 50 angs are established by molecular dynamics method and analyze their fracture behavior. Findings demonstrate that CNTs undergo notable elastic deformation and plastic deformation during stretching. When the CNTs with those containing 0, 4, 8, and 16 random vacancy defects, the strains of the zigzag CNTs when they break are 0.416, 0.346, 0.345, and 0.331, respectively. For the armchair CNTs, the strains of CNTs when they break are 0.494, 0.442, 0.411, and 0.384, respectively. So the strain value of the CNTs with more vacancy defects is smaller when they break. In addition, the zigzag CNT is disconnected along cross section, while the armchair CNT is disconnected along 45° cross section. When comparing non-defect CNTs with those containing 4, 8, and 16 random vacancy defects, the ultimate strength of the zigzag CNTs decreased by 7.56%, 18.24%, and 38.19%, respectively. For the armchair CNTs, the ultimate strength decreased by 25.64%, 30.21%, and 45.84%, respectively. The ultimate strain of the zigzag CNTs decreases by 11.55%, 15.58%, and 23.81% for 4, 8, and 16 vacancy defects, respectively. As for the armchair CNTs, the ultimate strain decreased by 12.54%, 14.32%, and 19.31% for the corresponding defect quantities. Consequently, the presence of vacancy defects considerably weakens the tensile mechanical properties of CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data openly available in a public repository.

References

  1. Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE (1985) C60 - Buckminsterfullerene. Nature 318:162–163. https://doi.org/10.1038/318162a0

    Article  CAS  Google Scholar 

  2. Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335–349. https://doi.org/10.1016/0022-0248(76)90115-9

    Article  CAS  Google Scholar 

  3. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  4. Moriarty P (2001) Nanostructured materials. Rep Prog Phys 64(3):297–381. https://doi.org/10.1088/0034-4885/64/3/201

    Article  CAS  Google Scholar 

  5. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678–680. https://doi.org/10.1038/381678a0

    Article  CAS  Google Scholar 

  6. Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79(7):1297–1300. https://doi.org/10.1103/PhysRevLett.79.1297

    Article  CAS  Google Scholar 

  7. Dai H, Hafner J, Rinzler A et al (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384(6605):147–150. https://doi.org/10.1038/384147a0

    Article  CAS  Google Scholar 

  8. Zhu H, Wu D, Xu C (2003) Carbon nanotubes. China Machine Press, Beijing

    Google Scholar 

  9. Huiming C (2002) Carbon nanotubes: preparation, structure, physical properties and applications. Chemical Industry Press, Beijing

    Google Scholar 

  10. Yu M-F, Lourie O, Dyer MJ et al (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640. https://doi.org/10.1126/science.287.5453.63

    Article  CAS  Google Scholar 

  11. Lourie O, Cox DM, Wagner HD (1998) Buckling and collapse of embedded carbon nanotubes. Phys Rev Lett 81(8):1638–1641. https://doi.org/10.1103/PhysRevLett.81.1638

    Article  CAS  Google Scholar 

  12. Berber S, Kwon Y-K, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84(20):4613–4616. https://doi.org/10.1007/0-387-25100-6_8

    Article  CAS  Google Scholar 

  13. Che J, Cagin T, Goddard WA III (2000) Thermal conductivity of carbon nanotubes. Nanotechnology 11(2):65–69. https://doi.org/10.1088/0957-4484/11/2/305

    Article  CAS  Google Scholar 

  14. Rinzler AG, Hafner JH, Nikolaev P et al (1995) Unraveling nanotubes: field emission from an atomic wire. Science 269(5230):1550–1553. https://doi.org/10.1126/science.269.5230.1550

    Article  CAS  Google Scholar 

  15. Li Y-H, Wang S, Cao A et al (2001) Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chem Phys Lett 350(5–6):412–416. https://doi.org/10.1016/S0009-2614(01)01351-3

    Article  CAS  Google Scholar 

  16. Dillon AC, Jones KM, Bekkedahl TA et al (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386(6623):377–379. https://doi.org/10.1038/386377a0

    Article  CAS  Google Scholar 

  17. Sasaki N, Toyoda A, Itamura N, Miura K (2008) Simulation of nanoscale peeling and adhesion of single-walled carbon nanotube on graphite surface. e-J Surf Sci Nanotechnol 6:72–78. https://doi.org/10.1380/ejssnt.2008.72

    Article  CAS  Google Scholar 

  18. Hair JF, Hult GTM, Ringle CM et al (2017) Mirror, mirror on the wall: a comparative evaluation of composite-based structural equation modeling methods. J Acad Mark Sci 45:616–632. https://doi.org/10.1007/s11747-017-0517

    Article  Google Scholar 

  19. Chowdhury SC, Okabe T (2007) Computer simulation of carbon nanotube pull-out from polymer by the molecular dynamics method. Compos: Part A 38:747–754. https://doi.org/10.1016/j.compositesa.2006.09.011

    Article  CAS  Google Scholar 

  20. Grubmüller H, Heymann B, Tavan P (1996) Ligand binding: molecular mechanics calculation of the Streptavidin-Biotin rupture force [J]. Science 271:997–999. https://doi.org/10.1126/science.271.5251.997

    Article  Google Scholar 

  21. Marszalek PE, Lu H, Li H, Carrion-Vazquez M, Oberhauser AF, Schulten K, Fernandez JM (1999) Mechanical unfolding intermediates in titin modules. Nature 402:100–103. https://doi.org/10.1038/47083

    Article  CAS  Google Scholar 

  22. Gullingsrud J, Schulten K (2003) Gating of Msc L studied by steered molecular dynamics. Biophys J 85:2087–2099. https://doi.org/10.1016/s0006-3495(03)74637-2

    Article  CAS  Google Scholar 

  23. Reif M, Oesterhelt F, Heymann B, Gaub HE (1997) Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275:1295–1297. https://doi.org/10.1126/science.275.5304.1295

    Article  Google Scholar 

  24. Reif M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112. https://doi.org/10.1126/science.276.5315.1109

    Article  Google Scholar 

  25. Cui SX, Liu CJ, Zhang X (2003) Simple method to isolate single polymer chains for the direct measurement of the desorption force. Nano Lett 3:245–248. https://doi.org/10.1021/nl025892a

    Article  CAS  Google Scholar 

  26. Cui SX, Liu CJ, Zhang WK, Zhang X, Wu C (2003) Desorption force per polystyrene segment in water. Macromolecules 36:3779–3782. https://doi.org/10.1021/ma034090e

    Article  CAS  Google Scholar 

  27. Zhang WK, Zhang X (2003) Single molecule mechanochemistry of macromolecules. Prog Polym Sci 28:1271–1295. https://doi.org/10.1016/S0079-6700(03)00046-7

    Article  CAS  Google Scholar 

  28. Büyüköztürk O, Buehler JM, Lau D, Tuakta C (2011) Structural solution using molecular dynamics: fundamentals and a case study of epoxy-silica interface. Int J Solids Struct 48:2131–2140. https://doi.org/10.1007/s10409-005-0027-9

    Article  CAS  Google Scholar 

  29. Shi XH, Kong Y, Zhao YP, Gao HJ (2005) Molecular dynamics simulation of peeling a DNA molecule on substrate. Acta Mech Sin 21:249–256. https://doi.org/10.1007/s10409-005-0027-9

    Article  CAS  Google Scholar 

  30. Ghamarpoor R, Jamshidi M (2022) Preparation of Superhydrophobic/Superoleophilic nitrile rubber (NBR) nanocomposites contained silanized nano silica for efficient oil/water separation. Sep Purif Technol 291:120854. https://doi.org/10.1016/j.jenvman.2023.118352

    Article  CAS  Google Scholar 

  31. Ghamarpoor R, Jamshidi M (2022) Synthesis of vinyl-based silica nanoparticles by sol–gel method and their influences on network microstructure and dynamic mechanical properties of nitrile rubber nanocomposites. Sci Rep 12(1):15286. https://doi.org/10.1016/j.seppur.2022.120854

    Article  CAS  Google Scholar 

  32. Ghamarpoor R, Jamshidi M (2022) Silanizing nano SiO2 and its application in recycled nitrile rubber to prepare super oil resistant/superhydrophobic/superoleophilic oil/water separator. J Environ Chem Eng 10(3):107971. https://doi.org/10.1038/s41598-022-19664-w

    Article  CAS  Google Scholar 

  33. Afshari BB, Jamshidi M, Rostami M et al (2022) Improving the mechanical/anticorrosive properties of a nitrile rubber-based adhesive filled with cerium oxide nanoparticles using a two-step surface modification method. ACS Omega 7(49):44912. https://doi.org/10.1016/j.jece.2022.107971

    Article  CAS  Google Scholar 

  34. Ghamarpoor R, Jamshidi M (2023) Synergistic effect of microwave assisted devulcanization of waste NBR rubber and using superhydrophobic/superoleophilic silica nanoparticles on oil-water separation. Alex Eng J 69:67–84. https://doi.org/10.1021/acsomega.2c05092

    Article  CAS  Google Scholar 

  35. Eftekharipour F, Jamshidi M, Ghamarpoor R (2023) Fabricating core-shell of silane modified nano ZnO; Effects on photocatalytic degradation of benzene in air using acrylic nanocomposite. Alex Eng J 70:273–288. https://doi.org/10.1016/j.aej.2023.02.047

    Article  Google Scholar 

  36. Ghamarpoor R, Jamshidi M, Mohammadpour M (2023) Achieving outstanding mechanical/bonding performances by epoxy nanocomposite as concrete–steel rebar adhesive using silane modification of nano SiO2. Sci Rep 13(1):9157. https://doi.org/10.1038/s41598-023-36462-0

    Article  CAS  Google Scholar 

  37. Jiang H, Feng XQ, Huang Y, Hwang KC, Wu PD (2004) Defect nucleation in carbon nanotubes under tension and torsion: Stone-Wales transformation. Comput Methods Appl Mech Eng 193:3419–3429. https://doi.org/10.1016/j.cma.2003.09.025

    Article  Google Scholar 

  38. Qin Z, Qin QH, Feng XQ (2008) Mechanical property of carbon nanotubes with intramolecular junctions: molecular dynamics simulations. Phys Lett A 372:6661–6666. https://doi.org/10.1016/j.physleta.2008.09.010

    Article  CAS  Google Scholar 

  39. Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39(8):5566. https://doi.org/10.1103/PhysRevB.39.5566

    Article  CAS  Google Scholar 

  40. Natsuki T, Tantrakarn K, Endo M (2004) Prediction of elastic properties for single-walled carbon nanotubes. Carbon 42(1):39–45. https://doi.org/10.1016/j.carbon.2003.09.011

    Article  CAS  Google Scholar 

  41. Zhang EZ, Wang T, Zhao L et al (2014) Fast self-healing of graphene oxide-hectorite clay-Poly (N, N-dimethylacrylamide) hybrid hydrogels realized by near-infrared irradiation. ACS Appl Mater Interfaces 6(24):22855–22861. https://doi.org/10.1021/am507100m

    Article  CAS  Google Scholar 

  42. Pan CG, Liu LB, Chen Q et al (2017) Tough, stretchable, compressive novel polymer/graphene oxide nanocomposite hydrogels with excellent self-healing performance. ACS Appl Mater Interfaces 9(43):38052–38061. https://doi.org/10.1021/acsami.7b12932

    Article  CAS  Google Scholar 

  43. Zheng QB, Geng Y, Wang SJ et al (2010) Effects of functional group on the mechanical and wrinkling properties of graphene sheets. Carbon 48(15):4315–4322. https://doi.org/10.1016/j.carbon.2010.07.044

    Article  CAS  Google Scholar 

  44. Pei QX, Zhang YW, Shenoy VB (2010) A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon 48(3):898–904. https://doi.org/10.1016/j.carbon.2009.11.014

    Article  CAS  Google Scholar 

  45. Lin CH, Sheng DK, Liu XD et al (2017) A self-healable nanocomposite based on dual-crosslinked graphene oxide/polyurethane. Polymer 127:241–250. https://doi.org/10.1016/j.polymer.2017.09.001

    Article  CAS  Google Scholar 

  46. Syrett JA, Becer CR, Haddleton DM (2010) Self-healing and selfmendable polymers. Polym Chem 1(7):978–989. https://doi.org/10.1039/C0PY00104J

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LC and JL contributed to the conception of the study and design.

LC performed the material preparation, data collection, and analyses.

LC performed the simulation and wrote the manuscript.

JL contributed to analysis and manuscript preparation.

Corresponding author

Correspondence to Lijun Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Liu, J. Effect of vacancy defects on tensile properties of CNTs. J Nanopart Res 25, 223 (2023). https://doi.org/10.1007/s11051-023-05875-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05875-3

Keywords

Navigation