Skip to main content
Log in

Size effects on the magnetic and optical properties of CuO nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Optical and magnetic studies on CuO nanoparticles prepared by a chemical route are reported and the effect of size variation on these properties is discussed. SEM images show that the nanoparticles are interlinked into microspheres with the cages containing visible nanoscale holes. Diffuse reflectance spectroscopy indicates a consistent red shift in the fundamental band gap (indirect band gap) from 1.23 to 1 eV as the size decreases from 29 to 11 nm. This observed red shift is attributed to the presence of defect states within the band gap. A clear blue shift is observed in the direct band gap of these nanoparticles presumably due to the quantum confinement effects. Air-annealed samples show a paramagnetic response whereas particles annealed in a reducing atmosphere show additionally a weak ferromagnetic component at room temperature. For both types of particles, the paramagnetic and ferromagnetic moments, respectively, increase with decreasing size. The role of oxygen vacancies is understood to relate to the generation of free carriers mediating ferromagnetism between Cu spins. AC susceptibility measurements show both the antiferromagnetic transitions of CuO including the one at 231 K which is associated with the onset of the spiral antiferromagnetic phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ben-Moshe T, Dror I, Berkowitz B (2009) Oxidation of organic pollutants in aqueous solutions by nanosized copper oxide catalysts. Appl Catal B 85:207–211

    Article  CAS  Google Scholar 

  • Borgohain K, Mahamuni S (2002) Formation of single-phase CuO quantum particles. J Mater Res 17:1220–1223

    Article  CAS  Google Scholar 

  • Borgohain K, Singh JB, Rao MVR, Shripathi T, Mahamuni S (2000) Quantum size effects in CuO nanoparticles. Phys Rev B 61:11093–11096

    Article  CAS  Google Scholar 

  • Borzi RA, Stewart SJ, Mercader RC, Punte G, Garcia F (2001) Magnetic behavior of nanosized cupric oxide. J Magn Magn Mater 226–230:1513–1515

    Article  Google Scholar 

  • Chen XY, Cui H, Liu P, Yang GW (2007) Shape-induced ultraviolet absorption of CuO shuttlelike nanoparticles. Appl Phys Lett 90:183118

    Article  Google Scholar 

  • Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Eddison-Wesley Publishing Co, Massachusetts

    Google Scholar 

  • Eskes H, Tjeng LH, Sawaizky GA (1990) Cluster-model calculation of the electronic structure of CuO: a model material for the high T c superconductors. Phys Rev B 41:288–299

    Article  Google Scholar 

  • Fan H, Yang L, Hua W, Wu X, Wu Z, Xie S, Zou B (2004) Controlled synthesis of monodispersed CuO nanocrystals. Nanotechnology 15:37–42

    Article  CAS  Google Scholar 

  • Ghijsen J, Tjeng LH, van Elp J, Eskes H, Westerink J, Sawatzky GA, Czyzyk MT (1988) Electronic structure of Cu2O and CuO. Phys Rev B 38:11322–11330

    Article  CAS  Google Scholar 

  • Gizhevskii BA, Sukhorukov Yu P, Moskvin AS, Loshkareva NN, Mostovshchikova EV, Ermakov AE, Kozlov EA, Uimin MA, Gaviko VS (2006) Anomalies in the optical properties of nanocrystalline copper oxides CuO and Cu2O near the fundamental absorption edge. JETP 102:297–302

    Article  CAS  Google Scholar 

  • Jeong YK, Choi GM (1996) Nonstoichiometry and electrical conduction of CuO. Phys Chem Solids 57:81–84

    Article  CAS  Google Scholar 

  • Kimura T, Sekio Y, Nakamura H, Siegrist T, Ramirez AP (2008) Cupric oxide as an induced-multiferroic with high-TC. Nat Mater 7:291–294

    Article  CAS  Google Scholar 

  • Koffyberg FP, Benko FA (1982) A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO. J Appl Phys 53:1173–1177

    Article  CAS  Google Scholar 

  • Koo H-J, Whangbo M-H (2003) Magnetic superstructures of cupric oxide CuO as ordered arrangements of one-dimensional antiferromagnetic chains. Inorg Chem 42:1187–1192

    Article  CAS  Google Scholar 

  • Lajunen LHJ, Peramaki P (2004) Spectrochemical analysis by atomic absorption and emission. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Lin H, Huang CP, Li W, Ni C, Shah SI, Tseng Y-H (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B 68:1–11

    Article  CAS  Google Scholar 

  • Maaz K, Mumtaz A, Hasanain SK, Cylan A (2007) Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J Magn Magn Mater 308:289–295

    Article  CAS  Google Scholar 

  • Marabelli F, Parravicini GB (1994) Evidence of localized states in the optical gap of CuO. Phys B 199–200:255–256

    Article  Google Scholar 

  • Mishra SR, Losby J, Dubenko I, Roy S, Ali N, Marasinghe K (2004) Magnetic properties of mechanically milled nanosized cupric oxide. J Magn Magn Mater 279:111–117

    Article  CAS  Google Scholar 

  • Morales J, Sánchez L, Martín F, Ramos-Barradob JR, Sánchez M (2004) Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells. Electrochim Acta 49:4589–4597

    Article  CAS  Google Scholar 

  • Mørup S, Madsen DE, Frandsen C, Bahl CRH, Hansen MF (2007) Experimental and theoretical studies of nanoparticles of antiferromagnetic materials. J Phys 19:213202

    Google Scholar 

  • Ovchinnikov SG, Gizhevskii BA, Sukhorukov Yu P, Ermakov AE, Uimin MA, Kozlov EA, Kotov Ya, Bagazeev AAV (2007) Specific features of the electronic structure and optical spectra of nanoparticles with strong electron correlations. Phys Solid State 49:1116–1120

    Article  CAS  Google Scholar 

  • Papadimitropoulos G, Vourdas N, Vamvakas VEm, Davazoglou D (2006) Optical and structural properties of copper oxide thin films grown by oxidation of metal layers. Thin Solid Films 515:2428–2432

    Article  CAS  Google Scholar 

  • Parmigiani F, Samoggia G (1988) Experimental evidence of a fluctuating charge state in cupric oxide. Europhys Lett 7:543–548

    Article  CAS  Google Scholar 

  • Punnoose A, Seehra MS (2002) Hysteresis anomalies and exchange bias in 6.6 nm CuO nanoparticles. J Appl Phys 91:7766–7768

    Article  CAS  Google Scholar 

  • Punnoose A, Magnone H, Seehra MS, Bonevich J (2001) Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles. Phys Rev B 64:174420

    Article  Google Scholar 

  • Qi JQ, Tian HY, Li LT, Chan HLW (2007) Fabrication of CuO nanoparticles interlinked microsphere cages by solution method. Nanoscale Res Lett 2:107–111

    Article  CAS  Google Scholar 

  • Schmid C (2004) Nanoparticles, 1st edn. Wiley-VCH Verlag GmbH & Co, Weinheim

    Google Scholar 

  • Seehra MS, Punnoose A (2003) Particle size dependence of exchange bias and coercivity in CuO nanoparticles. Solid State Commun 128:299–302

    Article  CAS  Google Scholar 

  • Shimizu T, Matsumoto T, Goto A, Rao TVC, Yoshimura K, Kosuge K (2003) Spin susceptibility and superexchange interaction in the antiferromagnet CuO. Phys Rev B 68:224433

    Article  Google Scholar 

  • Simmons EL (1975) Diffuse reflectance spectroscopy: a comparison of the theories. Appl Opt 14:1380–1386

    Article  CAS  Google Scholar 

  • Stewart SJ, Multigner M, Marco JF, Berry FJ, Hernando A, Gonzáez JM (2004) Thermal dependence of the magnetization of antiferromagnetic copper (II) oxide nanoparticles. Solid State Commun 130:247–251

    Article  CAS  Google Scholar 

  • Sukhorukov Yu P, Gizhevskii BA, Mostovshchikova EV, Yermakov AYe, Tugushev SN, Kozlov EA (2006) Nanocrystalline copper oxide for selective solar energy absorbers. Tech Phys Lett 32:132–135

    Article  CAS  Google Scholar 

  • Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao CNR (2006) Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys Rev B 74:161306

    Article  Google Scholar 

  • Willardson RK, Beer AC (1967) Semiconductor and semimetals: optical properties of III-V compounds, vol 3. Academic press, New York

    Google Scholar 

  • Wu D, Zhang Q, Tao M (2006) LSDA + U study of cupric oxide: electronic structure and native point defects. Phys Rev B 73:235206

    Article  Google Scholar 

  • Yang BX, Tranquada JM, Shirane G (1988) Neutron scattering studies of the magnetic structure of cupric oxide. Phys Rev B 38:174–178

    Article  CAS  Google Scholar 

  • Yang BX, Thurston TR, Tranquada JM, Shirane G (1989) Neutron scattering studies of the magnetic structure of cupric oxide. Phys Rev B 39:4343–4349

    Article  CAS  Google Scholar 

  • Yoon SD, Chen Y, Yang A, Goodrich TL, Zuo X, Arena DA, Ziemer K, Vittoria C, Harris VG (2006) Oxygen-defect-induced magnetism to 880 K in semiconducting anatase TiO2−δ films. J Phys 18:L355–L361

    CAS  Google Scholar 

  • Zheng XG, Xu CN, Tomokiyo Y, Tanaka E, Yamada H, Soejima Y (2000) Observation of charge stripes in cupric oxide. Phys Rev Lett 85:5170–5173

    Article  CAS  Google Scholar 

  • Zheng XG, Mori T, Nishiyama K, Higemoto W, Xu CN (2004) Dramatic suppression of antiferromagnetic coupling in nanoparticles CuO. Solid State Commun 132:493–496

    Article  CAS  Google Scholar 

  • Zheng XG, Xu CN, Nishikubo K, Nishiyama K, Higemoto W, Moon WJ, Tanaka E, Otabe ES (2005) Finite-size effect on Néel temperature in antiferromagnetic nanoparticles. Phys Rev B 72:014464

    Article  Google Scholar 

Download references

Acknowledgments

A. Mumtaz and S. K. Hasanain acknowledge the support of the Higher Education Commission, Govt. of Pakistan, under the Project “Development and Study of Magnetic Nanostructures”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shama Rehman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehman, S., Mumtaz, A. & Hasanain, S.K. Size effects on the magnetic and optical properties of CuO nanoparticles. J Nanopart Res 13, 2497–2507 (2011). https://doi.org/10.1007/s11051-010-0143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0143-8

Keywords

Navigation