Skip to main content

Nanomaterials and their Classification

  • Chapter
  • First Online:
EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 62))

Abstract

In this chapter, we present a general classification of nanomaterials based on their dimensionality, shape, and composition. According to their dimensionality, nanomaterials include nanoparticles, nanotubes, and nanofilms. Nanomaterials can be made of single elements, such as metals or carbon, or multiple elements, such as metal oxides or composites. We review the most used types of nanomaterials up to date showing examples of their morphologies. The physicochemical properties of a material in nanoform can be very different from its bulk counterpart, depending not only on the type of materials, but on its size, shape, and functionalization. We discuss the most important physicochemical properties of nanomaterials, among which are morphology, dispersability, crystalline phase, melting temperature, and magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, C.P., Walker, K.A., Obare, S.O., Docherty, K.M.: Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS ONE 9, e85981 (2014)

    Article  Google Scholar 

  2. Agnihotri, S., Mukherji, S.: Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. Rsc Adv. 4, 3974–3983 (2014)

    Article  Google Scholar 

  3. Aguado, A., Jarrold, M.F.: Melting and freezing of metal clusters. Ann. Rev. Phys. Chem. 62(62), 151–172 (2011). and references therein

    Article  Google Scholar 

  4. Aguado, A., Lopez, J.M.: Anomalous size dependence in the melting temperatures of free sodium clusters: An explanation for the calorimetry experiments. Phys. Rev. Lett. 94 (2005)

    Google Scholar 

  5. Akbarzadeh, A., Samiei, M., Davaran, S.: Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 7, 1–13 (2012)

    Article  Google Scholar 

  6. Ali-Boucetta, H., Kostarelos, K.: Pharmacology of carbon nanotubes: toxicokinetics, excretion and tissue accumulation. Adv. Drug Deliv. Rev. 65, 2111–2119 (2013)

    Article  Google Scholar 

  7. Alivisatos, A.P.: Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 (1996)

    Article  Google Scholar 

  8. Anderson, D.S., Patchin, E.S., Silva, R.M., Uyeminami, D.L., Sharmah, A., Guo, T., Das, G.K., Brown, J.M., Shannahan, J., Gordon, T., Chen, L.C., Pinkerton, K.E., van Winkle, L.S.: Influence of particle size on persistence and clearance of aerosolized silver nanoparticles in the rat lung. Toxicol. Sci. 144, 366–381 (2015)

    Article  Google Scholar 

  9. Anderson, R.M., Yancey, D.F., Zhang, L., Chill, S.T., Henkelman, G., Crooks, R.M.: A theoretical and experimental approach for correlating nanoparticle structure and electrocatalytic activity. Acc. Chem. Res. 48, 1351–1357 (2015)

    Article  Google Scholar 

  10. Anghel, I., Grumezescu, A.M., Andronescu, E., Anghel, A.G., Ficai, A., Saviuc, C., Grumezescu, V., Vasile, B.S., Chifiriuc, M.C.: Magnetite nanoparticles for functionalized textile dressing to prevent fungal biofilms development. Nanoscale Res. Lett. 7, 501 (2012)

    Article  Google Scholar 

  11. Anton, R.: On the reaction kinetics of Ni with amorphous carbon. Carbon 46, 656–662 (2008)

    Article  Google Scholar 

  12. Arruebo, M., Fernandez-Pacheco, R., Ibarra, M.R., Santamaria, J.: Magnetic nanoparticles for drug delivery. Nano Today 2, 22–32 (2007)

    Article  Google Scholar 

  13. Asoro, M.A., Damiano, J., Ferreira, P.J.: Size effects on the melting temperature of silver nanoparticles: in-situ TEM observations. Microsc. Microanal. 15, 706–707 (2009)

    Article  Google Scholar 

  14. Bakand, S., Hayes, A., Dechsakulthorn, F.: Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal. Toxicol. 24, 125–135 (2012)

    Article  Google Scholar 

  15. Balasubramanian, K., Burghard, M.: Chemically functionalized carbon nanotubes. Small 1, 180–192 (2005)

    Article  Google Scholar 

  16. Ballestri, M., Baraldi, A., Gatti, A.M., Furci, L., Bagni, A., Loria, P., Rapana, R.M., Carulli, N., Albertazzi, A.: Liver and kidney foreign bodies granulomatosis in a patient with malocclusion, bruxism, and worn dental prostheses. Gastroenterology 121, 1234–1238 (2001)

    Article  Google Scholar 

  17. Braakhuis, H.M., Park, M.V., Gosens, I., de Jong, W.H., Cassee, F.R.: Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol. 11, 18 (2014)

    Article  Google Scholar 

  18. Busquets, M.A., Sabate, R., Estelrich, J.: Potential applications of magnetic particles to detect and treat Alzheimer’s disease. Nanoscale Res. Lett. 9, 538 (2014)

    Article  Google Scholar 

  19. Buzea, C., Beydaghyan, G., Elliott, C., Robbie, K.: Control of power law scaling in the growth of silicon nanocolumn pseudo-regular arrays deposited by glancing angle deposition. Nanotechnology 16, 1986–1992 (2005)

    Article  Google Scholar 

  20. Buzea, C., Kaminska, K., Beydaghyan, G., Brown, T., Elliott, C., Dean, C., Robbie, K.: Thickness and density evaluation for nanostructured thin films by glancing angle deposition. J. Vac. Sci. Technol., B 23, 2545–2552 (2005)

    Article  Google Scholar 

  21. Buzea, C., Pacheco, II., Robbie, K.: Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, MR17-71 and references therein (2007)

    Google Scholar 

  22. Chatterjee, K., Sarkar, S., Jagajjanani Rao, K., Paria, S.: Core/shell nanoparticles in biomedical applications. Adv. Colloid Interf. Sci. 209, 8–39 (2014)

    Article  Google Scholar 

  23. Checchi, L., Nucci, M.C., Gatti, A.M., Mattia, D., Violante, F.S.: Sarcoidosis in a dental surgeon: a case report. J. Med. Case Rep. 4, 259 (2010)

    Article  Google Scholar 

  24. Chen, N., Wang, H., Huang, Q., Li, J., Yan, J., He, D., Fan, C., Song, H.: Long-term effects of nanoparticles on nutrition and metabolism. Small 10, 3603–3611 (2014)

    Article  Google Scholar 

  25. Cheng, B., Le, Y., Yu, J.G.: Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires. J. Hazard. Mater. 177, 971–977 (2010)

    Article  Google Scholar 

  26. Cho, K., Wang, X., Nie, S., Chen, Z.G., Shin, D.M.: Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. Official J. Am. Associa. Cancer Res. 14, 1310–1316 (2008)

    Article  Google Scholar 

  27. Chung, M., Wang, D.D., Rizzo, A.M., Gachette, D., Delnord, M., Parambi, R., Kang, C.M., Brugge, D.: Association of PNC, BC, and PM2.5 measured at a central monitoring site with blood pressure in a predominantly near highway population. Int. J. Environ. Res. Public Health 12, 2765–2780 (2015)

    Article  Google Scholar 

  28. Clift, M.J., Dechezelles, J.F., Rothen-Rutishauser, B., Petri-Fink, A.: A biological perspective toward the interaction of theranostic nanoparticles with the bloodstream—what needs to be considered? Front Chem. 3, 7 (2015)

    Article  Google Scholar 

  29. Corr, S.A., Rakovich, Y.P., Gun’Ko, Y.K.: Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Res. Lett. 3, 87–104 (2008)

    Article  Google Scholar 

  30. Couchman, P.R., Jesser, W.A.: Thermodynamic theory of size dependence of melting temperature in metals. Nature 269, 481–483 (1977)

    Article  Google Scholar 

  31. Crespo, P., De La Presa, P., Marin, P., Multigner, M., Alonso, J.M., Rivero, G., Yndurain, F., Gonzalez-Calbet, J.M., Hernando, A.: Magnetism in nanoparticles: tuning properties with coatings. J. Phys. Condensed Matter. 25 (2013)

    Google Scholar 

  32. Dai, L., Chang, D.W., Baek, J.B., Lu, W.: Carbon nanomaterials for advanced energy conversion and storage. Small 8, 1130–1166 (2012)

    Article  Google Scholar 

  33. Das, S.K., Das, A.R., Guha, A.K.: Microbial synthesis of multishaped gold nanostructures. Small 6, 1012–1021 (2010)

    Article  Google Scholar 

  34. Docter, D., Westmeier, D., Markiewicz, M., Stolte, S., Knauer, S.K., Stauber, R.H.: The nanoparticle biomolecule corona: lessons learned—challenge accepted? Chem. Soc. Rev. 44, 6094–6121 (2015)

    Article  Google Scholar 

  35. Fleischer, C.C., Payne, C.K.: Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes. Acc. Chem. Res. 47, 2651–2659 (2014)

    Article  Google Scholar 

  36. Foroozandeh, P., Aziz, A.A.: Merging worlds of nanomaterials and biological environment: factors governing protein corona formation on nanoparticles and its biological consequences. Nanoscale Res. Lett. 10, 221 (2015)

    Article  Google Scholar 

  37. Gaillet, S., Rouanet, J.M.: Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms–a review. Food Chem. Toxicol. 77, 58–63 (2015)

    Article  Google Scholar 

  38. Gajewicz, A., Schaeublin, N., Rasulev, B., Hussain, S., Leszczynska, D., Puzyn, T., Leszczynski, J.: Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies. Nanotoxicology 9, 313–325 (2015)

    Article  Google Scholar 

  39. Gatti, A.M.: Biocompatibility of micro- and nano-particles in the colon. Part II. Biomater. 25, 385–392 (2004)

    Google Scholar 

  40. Gatti, A.M., Montanari, S.: Retrieval analysis of clinical explanted vena cava filters. J. Biomed. Mater. Res. B Appl. Biomater. 77, 307–314 (2006)

    Article  Google Scholar 

  41. Gatti, A.M., Montanari, S., Monari, E., Gambarelli, A., Capitani, F., Parisini, B.: Detection of micro- and nano-sized biocompatible particles in the blood. J. Mater. Sci. Mater. Med. 15, 469–472 (2004)

    Article  Google Scholar 

  42. Gatti, A.M., Montanari, S., Gambarelli, A., Capitani, F., Salvatori, R.: In-vivo short- and long-term evaluation of the interaction material-blood. J. Mater. Sci. Mater. Med. 16, 1213–1219 (2005)

    Article  Google Scholar 

  43. Geiser, M., Kreyling, W.G.: Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol. 7, 2 (2010)

    Article  Google Scholar 

  44. Godwin, H., Nameth, C., Avery, D., Bergeson, L.L., Bernard, D., Beryt, E., Boyes, W., Brown, S., Clippinger, A.J., Cohen, Y., Doa, M., Hendren, C.O., Holden, P., Houck, K., Kane, A.B., Klaessig, F., Kodas, T., Landsiedel, R., Lynch, I., Malloy, T., Miller, M.B., Muller, J., Oberdorster, G., Petersen, E.J., Pleus, R.C., Sayre, P., Stone, V., Sullivan, K.M., Tentschert, J., Wallis, P., Nel, A.E.: Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making. ACS Nano 9, 3409–3417 (2015)

    Article  Google Scholar 

  45. Gong, M., Yang, H., Zhang, S., Yang, Y., Zhang, D., Qi, Y., Zou, L.: Superparamagnetic core/shell GoldMag nanoparticles: size-, concentration- and time-dependent cellular nanotoxicity on human umbilical vein endothelial cells and the suitable conditions for magnetic resonance imaging. J. Nanobiotechnol. 13, 24 (2015)

    Article  Google Scholar 

  46. Greget, R., Nealon, G.L., Vileno, B., Turek, P., Meny, C., Ott, F., Derory, A., Voirin, E., Riviere, E., Rogalev, A., Wilhelm, F., Joly, L., Knafo, W., Ballon, G., Terazzi, E., Kappler, J.P., Donnio, B., Gallani, J.L.: Magnetic properties of gold nanoparticles: a room-temperature quantum effect. ChemPhysChem 13, 3092–3097 (2012)

    Article  Google Scholar 

  47. Grillo, R., Rosa, A.H., Fraceto, L.F.: Engineered nanoparticles and organic matter: a review of the state-of-the-art. Chemosphere 119, 608–619 (2015)

    Article  Google Scholar 

  48. Guo, Y., Zhang, Z., Kim, D.H., Li, W., Nicolai, J., Procissi, D., Huan, Y., Han, G., Omary, R.A., Larson, A.C.: Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles. Int. J. Nanomedicine 8, 3437–3446 (2013)

    Article  Google Scholar 

  49. Haberland, H., Hippler, T., Donges, J., Kostko, O., Schmidt, M., von Issendorff, B.: Melting of sodium clusters: where do the magic numbers come from? Phys. Rev. Lett. 94, 035701 (2005)

    Article  Google Scholar 

  50. Hadrup, N., Lam, H.R.: Oral toxicity of silver ions, silver nanoparticles and colloidal silver—a review. Regul. Toxicol. Pharmacol. 68, 1–7 (2014)

    Article  Google Scholar 

  51. Hadrup, N., Sharma, A.K., Poulsen, M., Nielsen, E.: Toxicological risk assessment of elemental gold following oral exposure to sheets and nanoparticles—A review. Regul. Toxicol. Pharmacol. 72, 216–221 (2015)

    Article  Google Scholar 

  52. Hannon, J.C., Kerry, J., Cruz-Romero, M., Morris, M., Cummins, E.: Advances and challenges for the use of engineered nanoparticles in food contact materials. Trends Food Sci. Technol. 43, 43–62 (2015)

    Article  Google Scholar 

  53. Hofmann-Amtenbrink, M., Grainger, D.W., Hofmann, H.: Nanoparticles in medicine: current challenges facing inorganic nanoparticle toxicity assessments and standardizations. http://www.ncbi.nlm.nih.gov/pubmed/26051651 (2015). Accessed 7 Nov 2015

  54. Hori, H., Teranishi, T., Nakae, Y., Seino, Y., Miyake, M., Yamada, S.: Anomalous magnetic polarization effect of Pd and Au nano-particles. Phys. Lett. A 263, 406–410 (1999)

    Article  Google Scholar 

  55. Hori, H., Yamamoto, Y., Iwamoto, T., Miura, T., Teranishi, T., Miyake, M.: Diameter dependence of ferromagnetic spin moment in Au nanocrystals. Phys. Rev. B, 69, (2004)

    Google Scholar 

  56. Hu, Y., Peng, K.Q., Liu, L., Qiao, Z., Huang, X., Wu, X.L., Meng, X.M., Lee, S.T.: Continuous-flow mass production of silicon nanowires via substrate-enhanced metal-catalyzed electroless etching of silicon with dissolved oxygen as an oxidant. Sci. Reports, 4 (2014)

    Google Scholar 

  57. Huang, X., Teng, X., Chen, D., Tang, F., He, J.: The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31, 438–448 (2010)

    Article  Google Scholar 

  58. Huang, X.H., Jain, P.K., El-Sayed, I.H., El-Sayed, M.A.: Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine 2, 681–693 (2007). and references therein

    Article  Google Scholar 

  59. Huber, D.L.: Synthesis, properties, and applications of iron nanoparticles. Small 1, 482–501 (2005)

    Article  Google Scholar 

  60. Hussein, M.Z., Azmin, W., Mustafa, M., Yahaya, A.H.: Bacillus cereus as a biotemplating agent for the synthesis of zinc oxide with raspberry- and plate-like structures. J. Inorg. Biochem. 103, 1145–1150 (2009)

    Article  Google Scholar 

  61. Issa, B., Obaidat, I.M., Albiss, B.A., Haik, Y.: Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 14, 21266–21305 (2013)

    Article  Google Scholar 

  62. Jeong, U., Teng, X.W., Wang, Y., Yang, H., Xia, Y.N.: Superparamagnetic colloids: controlled synthesis and niche applications. Adv. Mater. 19, 33–60 (2007)

    Article  Google Scholar 

  63. Jin, M., Zhang, H., Wang, J., Zhong, X., Lu, N., Li, Z., Xie, Z., Kim, M.J., Xia, Y.: Copper can still be epitaxially deposited on palladium nanocrystals to generate core-shell nanocubes despite their large lattice mismatch. ACS Nano 6, 2566–2573 (2012)

    Article  Google Scholar 

  64. Keck, C.M., Muller, R.H.: Nanotoxicological classification system (NCS)—a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur. J. Pharm. Biopharm. 84, 445–448 (2013)

    Article  Google Scholar 

  65. Kedia, A., Kumar, P.S.: Precursor-driven nucleation and growth kinetics of gold nanostars. J. Phys. Chem. C 116, 1679–1686 (2012)

    Article  Google Scholar 

  66. Kedia, A., Kumar, H., Kumar, P.S.: Tweaking anisotropic gold nanostars: covariant control of a polymer- solvent mixture complex. Rsc Adv. 5, 5205–5212 (2015)

    Article  Google Scholar 

  67. Keller, J., Wohlleben, W., Ma-Hock, L., Strauss, V., Groters, S., Kuttler, K., Wiench, K., Herden, C., Oberdorster, G., van Ravenzwaay, B., Landsiedel, R.: Time course of lung retention and toxicity of inhaled particles: short-term exposure to nano-Ceria. Arch. Toxicol. 88, 2033–2059 (2014)

    Article  Google Scholar 

  68. Khlebtsov, N., Dykman, L.: Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 40, 1647–1671 (2011)

    Article  Google Scholar 

  69. Khlebtsov, N.G., Dykman, L.A.: Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transfer 111, 1–35 (2010)

    Article  Google Scholar 

  70. Kiessling, F., Mertens, M.E., Grimm, J., Lammers, T.: Nanoparticles for imaging: top or flop? Radiology 273, 10–28 (2014)

    Article  Google Scholar 

  71. Kim, J.E., Shin, J.Y., Cho, M.H.: Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects. Arch. Toxicol. 86, 685–700 (2012)

    Article  Google Scholar 

  72. Kim, Y.S., Kim, J.S., Cho, H.S., Rha, D.S., Kim, J.M., Park, J.D., Choi, B.S., Lim, R., Chang, H.K., Chung, Y.H., Kwon, I.H., Jeong, J., Han, B.S., Yu, I.J.: Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 20, 575–583 (2008)

    Article  Google Scholar 

  73. Klabunde, K.J., Stark, J., Koper, O., Mohs, C., Park, D.G., Decker, S., Jiang, Y., Lagadic, I., Zhang, D.J.: Nanocrystals as stoichiometric reagents with unique surface chemistry. J. Phys. Chem. 100, 12142–12153 (1996)

    Article  Google Scholar 

  74. Kolhatkar, A.G., Jamison, A.C., Litvinov, D., Willson, R.C., Lee, T.R.: Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci. 14, 15977–16009 (2013)

    Article  Google Scholar 

  75. Konduru, N., Keller, J., Ma-Hock, L., Groters, S., Landsiedel, R., Donaghey, T.C., Brain, J.D., Wohlleben, W., Molina, R.M.: Biokinetics and effects of barium sulfate nanoparticles. Part Fibre Toxicol. 11, 55 (2014)

    Article  Google Scholar 

  76. Korth, B.D., Keng, P., Shim, I., Bowles, S.E., Tang, C., Kowalewski, T., Nebesny, K.W., Pyun, J.: Polymer-coated ferromagnetic colloids from well-defined macromolecular surfactants and assembly into nanoparticle chains. J. Am. Chem. Soc. 128, 6562–6563 (2006)

    Article  Google Scholar 

  77. Krahne, R., Morello, G., Figuerola, A., George, C., Deka, S., Manna, L.: Physical properties of elongated inorganic nanoparticles. Phys. Reports Rev. Sect. Phys. Lett. 501, 75–221 (2011)

    Google Scholar 

  78. Kreyling, W.G., Semmler-Behnke, M., Takenaka, S., Moller, W.: Differences in the biokinetics of inhaled nano- versus micrometer-sized particles. Acc. Chem. Res. 46, 714–722 (2013)

    Article  Google Scholar 

  79. Kreyling, W.G., Hirn, S., Moller, W., Schleh, C., Wenk, A., Celik, G., Lipka, J., Schaffler, M., Haberl, N., Johnston, B.D., Sperling, R., Schmid, G., Simon, U., Parak, W.J., Semmler-Behnke, M.: Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. ACS Nano 8, 222–233 (2014)

    Article  Google Scholar 

  80. Krishna, K.S., Tarakeshwar, P., Mujica, V., Kumar, C.: Chemically induced magnetism in atomically precise gold clusters. Small 10, 907–911 (2014)

    Article  Google Scholar 

  81. Kulkarni, R.R., Shaiwale, N.S., Deobagkar, D.N., Deobagkar, D.D.: Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity. Int. J. Nanomed. 10, 963–974 (2015)

    Google Scholar 

  82. Lai, S.L., Guo, J.Y., Petrova, V., Ramanath, G., Allen, L.H.: Size-dependent melting properties of small tin particles: Nanocalorimetric measurements. Phys. Rev. Lett. 77, 99–102 (1996)

    Article  Google Scholar 

  83. Leonard, S.S., Cohen, G.M., Kenyon, A.J., Schwegler-Berry, D., Fix, N.R., Bangsaruntip, S., Roberts, J.R.: Generation of reactive oxygen species from silicon nanowires. Environ. Health Insights 8, 21–29 (2014)

    Article  Google Scholar 

  84. Li, C.Y., Wu, C.M., Karna, S.K., Wang, C.W., Hsu, D., Wang, C.J., Li, W.H.: Intrinsic magnetic moments of gold nanoparticles. Phys. Rev. B, 83 (2011)

    Google Scholar 

  85. Li, J., Hietala, S., Tian, X.: BaTiO3 supercages: unusual oriented nanoparticle aggregation and continuous ordering transition in morphology. ACS Nano 9, 496–502 (2015)

    Article  Google Scholar 

  86. Li, M., Kim, H.S., Tian, L., Yu, M.K., Jon, S., Moon, W.K.: Comparison of two ultrasmall superparamagnetic iron oxides on cytotoxicity and MR imaging of tumors. Theranostics 2, 76–85 (2012)

    Article  Google Scholar 

  87. Liu, L., Yoo, S.H., Lee, S.A., Park, S.: Wet-chemical synthesis of palladium nanosprings. Nano Lett. 11, 3979–3982 (2011)

    Article  Google Scholar 

  88. Liu, R., Rallo, R., George, S., Ji, Z., Nair, S., Nel, A.E., Cohen, Y.: Classification NanoSAR development for cytotoxicity of metal oxide nanoparticles. Small 7, 1118–1126 (2011)

    Article  Google Scholar 

  89. Liu, R., Rallo, R., Weissleder, R., Tassa, C., Shaw, S., Cohen, Y.: Nano-SAR development for bioactivity of nanoparticles with considerations of decision boundaries. Small 9, 1842–1852 (2013)

    Article  Google Scholar 

  90. Lohani, A., Verma, A., Joshi, H., Yadav, N., Karki, N.: Nanotechnology-based cosmeceuticals. ISRN Dermatol 2014, 843687 (2014)

    Article  Google Scholar 

  91. Lue, J.T.: A review of characterization and physical property studies of metallic nanoparticles. J. Phys. Chem. Solids 62, 1599–1612 (2001)

    Article  Google Scholar 

  92. Luo, L.L., Wu, J.S., Luo, J.Y., Huang, J.X., Dravid, V.P.: Dynamics of electrochemical lithiation/delithiation of graphene-encapsulated silicon nanoparticles studied by In-situ TEM. Sci. Reports, 4 (2014)

    Google Scholar 

  93. Ma-Hock, L., Strauss, V., Treumann, S., Kuttler, K., Wohlleben, W., Hofmann, T., Groters, S., Wiench, K., van Ravenzwaay, B., Landsiedel, R.: Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black. Part Fibre Toxicol. 10, 23 (2013)

    Article  Google Scholar 

  94. Maitra, U., Das, B., Kumar, N., Sundaresan, A., Rao, C.N.R.: Ferromagnetism exhibited by nanoparticles of noble metals. ChemPhysChem 12, 2322–2327 (2011)

    Article  Google Scholar 

  95. Maleki Dizaj, S., Mennati, A., Jafari, S., Khezri, K., Adibkia, K., Antimicrobial activity of carbon-based nanoparticles. Adv. Pharm. Bull. 5, 19–23 (2015)

    Google Scholar 

  96. Mandal, B., Bhattacharjee, H., Mittal, N., Sah, H., Balabathula, P., Thoma, L.A., Wood, G.C.: Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomed. Nanotechnol. Biol. Med. 9, 474–491 (2013)

    Article  Google Scholar 

  97. Mark, A.G., Gibbs, J.G., Lee, T.C., Fischer, P.: Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 12, 802–807 (2013)

    Article  Google Scholar 

  98. Marx, D.E., Barillo, D.J.: Silver in medicine: the basic science. Burns J. Int. Soc. Burn Injuries 40(Suppl 1), S9–S18 (2014)

    Article  Google Scholar 

  99. Mattox, T.M., Ye, X.C., Manthiram, K., Schuck, P.J., Alivisatos, A.P., Urban, J.J.: Chemical control of plasmons in metal chalcogenide and metal oxide nanostructures. Adv. Mater. 27, 5830–5837 (2015)

    Article  Google Scholar 

  100. Meindl, C., Kueznik, T., Bosch, M., Roblegg, E., Frohlich, E.: Intracellular calcium levels as screening tool for nanoparticle toxicity. J. Appl. Toxicol. 35, 1150–1159 (2015)

    Article  Google Scholar 

  101. Monopoli, M.P., Aberg, C., Salvati, A., Dawson, K.A.: Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012)

    Article  Google Scholar 

  102. Nakane, H.: Translocation of particles deposited in the respiratory system: a systematic review and statistical analysis. Environ. Health Prev. Med. 17, 263–274 (2012)

    Article  Google Scholar 

  103. Nath, D., Banerjee, P.: Green nanotechnology—a new hope for medical biology. Environ. Toxicol. Pharmacol. 36, 997–1014 (2013)

    Article  Google Scholar 

  104. Nealon, G.L., Donnio, B., Greget, R., Kappler, J.P., Terazzi, E., Gallani, J.L.: Magnetism in gold nanoparticles. Nanoscale 4, 5244–5258 (2012)

    Article  Google Scholar 

  105. Nel, A., Xia, T., Meng, H., Wang, X., Lin, S., Ji, Z., Zhang, H.: Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc. Chem. Res. 46, 607–621 (2013)

    Article  Google Scholar 

  106. Nie, S., Xing, Y., Kim, G.J., Simons, J.W.: Nanotechnology applications in cancer. Ann. Rev. Biomed. Eng. 9, 257–288 (2007)

    Article  Google Scholar 

  107. Noya, E.G., Doye, J.P.K., Wales, D.J., Aguado, A.: Geometric magic numbers of sodium clusters: interpretation of the melting behaviour. Euro. Phys. J. D 43, 57–60 (2007)

    Article  Google Scholar 

  108. Ojha, U., Steenbergen, K.G., Gaston, N.: Al20 + does melt, albeit above the bulk melting temperature of aluminium. Phys. Chem. Chem. Phys. 17, 3741–3748 (2015)

    Article  Google Scholar 

  109. Pacheco Blandino, I., Vanner, R., Buzea, C.: Toxicity of nanoparticles. In: Pacheco-Torgal, F., Jalali, S., Fucic, A. (eds.) Toxicity of Building Materials. Woodhead (2012)

    Google Scholar 

  110. Park, T.J., Lee, S.Y., Heo, N.S., Seo, T.S.: In vivo synthesis of diverse metal nanoparticles by recombinant escherichia coli. Angewandte Chemie-International Edition 49, 7019–7024 (2010)

    Article  Google Scholar 

  111. Peng, Z.M., Yang, H.: Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 4, 143–164 (2009)

    Article  Google Scholar 

  112. Podila, R., Brown, J.M.: Toxicity of engineered nanomaterials: a physicochemical perspective. J. Biochem. Mol. Toxicol. 27, 50–55 (2013). and references therein

    Article  Google Scholar 

  113. Potocnik, J.: Commission recommendation of 18 October 2011 on the definition of nanomaterial (Text with EEA relevance) (2011/696/EU). In: Commission, T.E. (ed.) Official Journal of the European Union (2011)

    Google Scholar 

  114. Pushpa, R., Waghmare, U., Narasimhan, S.: Bond stiffening in small nanoclusters and its consequences for mechanical and thermal properties. Phys. Rev. B 77, 045427 (2008)

    Article  Google Scholar 

  115. Pyfer, K.L., Kafader, J.O., Yalamanchali, A., Jarrold, M.F.: Melting of size-selected gallium clusters with 60–183 atoms. J. Phys. Chem. A 118, 4900–4906 (2014)

    Article  Google Scholar 

  116. Qi, W.H.: Size effect on melting temperature of nanosolids. Phys. B-Condensed Matter. 368, 46–50 (2005)

    Article  Google Scholar 

  117. Qiu, Y., Liu, Y., Wang, L., Xu, L., Bai, R., Ji, Y., Wu, X., Zhao, Y., Li, Y., Chen, C.: Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31, 7606–7619 (2010)

    Article  Google Scholar 

  118. Quester, K., Avalos-Borja, M., Castro-Longoria, E.: Biosynthesis and microscopic study of metallic nanoparticles. Micron 54–55, 1–27 (2013). and references therein

    Article  Google Scholar 

  119. Reich, S., Leitus, G., Feldman, Y.: Observation of magnetism in Au thin films. Appl. Phys. Lett. 88 (2006)

    Google Scholar 

  120. Robbie, K., Sit, J.C., Brett, M.J.: Advanced techniques for glancing angle deposition. J. Vacuum Sci. Technol. B 16, 1115–1122 (1998)

    Article  Google Scholar 

  121. Robbie, K., Beydaghyan, G., Brown, T., Dean, C., Adams, J., Buzea, C.: Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure. Rev. Sci. Instrum. 75, 1089–1097 (2004)

    Article  Google Scholar 

  122. Roy, R., Kumar, S., Tripathi, A., Das, M., Dwivedi, P.D.: Interactive threats of nanoparticles to the biological system. Immunol. Lett. 158, 79–87 (2014)

    Article  Google Scholar 

  123. Saha, K., Bajaj, A., Duncan, B., Rotello, V.M.: Beauty is skin deep: a surface monolayer perspective on nanoparticle interactions with cells and biomacromolecules. Small 7, 1903–1918 (2011)

    Article  Google Scholar 

  124. Sakamoto, Y., Oba, Y., Maki, H., Suda, M., Einaga, Y., Sato, T., Mizumaki, M., Kawamura, N., Suzuki, M.: Ferromagnetism of Pt nanoparticles induced by surface chemisorption. Phys. Rev. B 83 (2011)

    Google Scholar 

  125. Saliani, M., Jalal, R., Kafshdare Goharshadi, E.: Effects of pH and temperature on antibacterial activity of zinc oxide nanofluid against escherichia coli O157: H7 and staphylococcus aureus. Jundishapur J. Microbiol. 8, e17115 (2015)

    Google Scholar 

  126. Sato, R., Ishikawa, S., Sato, H., Sato, T.: Magnetic order of Au nanoparticle with clean surface. J. Mag. Mag. Mater. 393, 209–212 (2015). and references therein

    Article  Google Scholar 

  127. Savi, M., Rossi, S., Bocchi, L., Gennaccaro, L., Cacciani, F., Perotti, A., Amidani, D., Alinovi, R., Goldoni, M., Aliatis, I., Lottici, P.P., Bersani, D., Campanini, M., Pinelli, S., Petyx, M., Frati, C., Gervasi, A., Urbanek, K., Quaini, F., Buschini, A., Stilli, D., Rivetti, C., Macchi, E., Mutti, A., Miragoli, M., Zaniboni, M.: Titanium dioxide nanoparticles promote arrhythmias via a direct interaction with rat cardiac tissue. Part Fibre Toxicol. 11, 63 (2014)

    Article  Google Scholar 

  128. Scholes, G.D.: Controlling the optical properties of inorganic nanoparticles. Adv. Funct. Mater. 18, 1157–1172 (2008)

    Article  Google Scholar 

  129. Seil, J.T., Webster, T.J.: Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomed. 7, 2767–2781 (2012)

    Google Scholar 

  130. Shinohara, T., Sato, T., Taniyama, T.: Surface ferromagnetism of Pd fine particles. Phys. Rev. Lett. 91 (2003)

    Google Scholar 

  131. Shvartsburg, A.A., Jarrold, M.F.: Solid clusters above the bulk melting point. Phys. Rev. Lett. 85, 2530–2532 (2000)

    Article  Google Scholar 

  132. Silva, R.M., Doudrick, K., Franzi, L.M., Teesy, C., Anderson, D.S., Wu, Z., Mitra, S., Vu, V., Dutrow, G., Evans, J.E., Westerhoff, P., van Winkle, L.S., Raabe, O.G., Pinkerton, K.E.: Instillation versus inhalation of multiwalled carbon nanotubes: exposure-related health effects, clearance, and the role of particle characteristics. ACS Nano 8, 8911–8931 (2014)

    Article  Google Scholar 

  133. Smith, A.M., Nie, S.: Chemical analysis and cellular imaging with quantum dots. Analyst 129, 672–677 (2004)

    Article  Google Scholar 

  134. Smith, A.M., Duan, H., Mohs, A.M., Nie, S.: Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev. 60, 1226–1240 (2008)

    Article  Google Scholar 

  135. Stark, W.J., Stoessel, P.R., Wohlleben, W., Hafner, A.: Industrial applications of nanoparticles. Chem. Soc. Rev. 44, 5793–5805 (2015)

    Article  Google Scholar 

  136. Sun, X., Cai, W., Chen, X.: Positron emission tomography imaging using radiolabeled inorganic nanomaterials. Acc. Chem. Res. 48, 286–294 (2015)

    Article  Google Scholar 

  137. Theodorou, I.G., Ryan, M.P., Tetley, T.D., Porter, A.E.: Inhalation of silver nanomaterials–seeing the risks. Int. J. Mol. Sci. 15, 23936–23974 (2014)

    Article  Google Scholar 

  138. Thomas, C.R., George, S., Horst, A.M., Ji, Z., Miller, R.J., Peralta-Videa, J.R., Xia, T., Pokhrel, S., Madler, L., Gardea-Torresdey, J.L., Holden, P.A., Keller, A.A., Lenihan, H.S., Nel, A.E., Zink, J.I.: Nanomaterials in the environment: from materials to high-throughput screening to organisms. ACS Nano 5, 13–20 (2011)

    Article  Google Scholar 

  139. Tottori, S., Zhang, L., Qiu, F., Krawczyk, K.K., Franco-Obregon, A., Nelson, B.J.: Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 24, 811–816 (2012)

    Article  Google Scholar 

  140. Trouiller, A.J., Hebie, S., el Bahhaj, F., Napporn, T.W., Bertrand, P.: Chemistry for oncotheranostic gold nanoparticles. Eur. J. Med. Chem. 99, 92–112 (2015)

    Article  Google Scholar 

  141. Volokitin, Y., Sinzig, J., Dejongh, L.J., Schmid, G., Vargaftik, M.N., Moiseev, II.: Quantum-size effects in the thermodynamic properties of metallic nanoparticles. Nature 384, 621–623 (1996)

    Google Scholar 

  142. Wang, B., He, X., Zhang, Z., Zhao, Y., Feng, W.: Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc. Chem. Res. 46, 761–769 (2013)

    Article  Google Scholar 

  143. Xia, Y.S., Tang, Z.Y.: Monodisperse hollow supraparticles via selective oxidation. Adv. Funct. Mater. 22, 2585–2593 (2012)

    Article  Google Scholar 

  144. Xie, J.P., Lee, J.Y., Wang, D.I.C., Ting, Y.P.: Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small 3, 672–682 (2007)

    Article  Google Scholar 

  145. Yamamoto, Y., Miura, T., Suzuki, M., Kawamura, N., Miyagawa, H., Nakamura, T., Kobayashi, K., Teranishi, T., Hori, H.: Direct observation of ferromagnetic spin polarization in gold nanoparticles. Phys. Rev. Lett. 93 (2004)

    Google Scholar 

  146. Yang, J.Y., Sun, Y., He, L., Xiong, C.M., Dou, R.F., Nie, J.C.: Size-dependent magnetic moments in ultrafine diamagnetic systems. J. Appl. Phys. 109 (2011)

    Google Scholar 

  147. Yang, S.T., Guo, W., Lin, Y., Deng, X.Y., Wang, H.F., Sun, H.F., Liu, Y.F., Wang, X., Wang, W., Chen, M., Huang, Y.P., Sun, Y.P.: Biodistribution of pristine single-walled carbon nanotubes in vivo. J. Phys. Chem. C 111, 17761–17764 (2007)

    Article  Google Scholar 

  148. Yang, Y., Zheng, Y., Cao, W., Titov, A., Hyvonen, J., Mandersjesse, R., Xue, J., Holloway, P.H., Qian, L.: High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photon. 9, 259–266 (2015)

    Google Scholar 

  149. Ye, L., Yong, K.-T., Liu, L., Roy, I., Hu, R., Zhu, J., Cai, H., Law, W.-C., Liu, J., Wang, K., Liu, J., Liu, Y., Hu, Y., Zhang, X., Swihart, M.T., Prasad, P.N.: A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat. Nano 7, 453–458 (2012)

    Article  Google Scholar 

  150. Yu, X., Zhan, Z.: The effects of the size of nanocrystalline materials on their thermodynamic and mechanical properties. Nano. Res. Lett. 9, 516 (2014)

    Article  Google Scholar 

  151. Zensi, A., Begley, D., Pontikis, C., Legros, C., Mihoreanu, L., Wagner, S., Buchel, C., von Briesen, H., Kreuter, J.: Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J. Controlled Release Official J. Controlled Release Soc. 137, 78–86 (2009)

    Article  Google Scholar 

  152. Zhang, Q., Huang, J.Q., Qian, W.Z., Zhang, Y.Y., Wei, F.: The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9, 1237–1265 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Buzea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Buzea, C., Pacheco, I. (2017). Nanomaterials and their Classification. In: Shukla, A. (eds) EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials. Advanced Structured Materials, vol 62. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3655-9_1

Download citation

Publish with us

Policies and ethics