Influence of the particle size distribution on the thermal conductivity of nanofluids

Research Paper

Abstract

In a previous study, we have obtained an equation to predict the thermal conductivity of nanofluids containing nanoparticles with conductive interface. The model is maximal particle packing dependent. In this study, the maximal packing is obtained as a function of the particle size distribution, which is the Gamma distribution. The thermal conductivity enhancement depends on the averaged particle size. Discussion concerning the influence of the suspension pH on the particle packing is made. The proposed model is evaluated using number of sets from the published experimental data to the thermal conductivity enhancement for different nanofluids.

Keywords

Nanofluids Thermal conductivity Size distribution Size effect Colloids 

References

  1. Bouclé J, Herlin-Boime N, Kassiba A (2005) Influence of silicon and carbon excesses on the aqueous dispersion of SiC nanocrystals for optical application. J Nanopart Res 7:275–285. doi:10.1007/s11051-005-3477-x CrossRefGoogle Scholar
  2. Chang H, Tsung TT, Chen LC, Jwo CS, Tsung JW, Lu YC (2005) The electrochemical properties of SiC nanoparticle suspension. J Mater Eng Perform 14(2):158–162. doi:10.1361/10599490523256 CrossRefGoogle Scholar
  3. Chang H, Jwo CS, Fan PS, Pai SH (2007) Process optimization and material properties for nanofluid manufacturing. Int J Adv Manuf Technol 34:300–306. doi:10.1007/s00170-006-0597-0 CrossRefGoogle Scholar
  4. Chen G, Yu W, Singh D, Cookson D, Routbort J (2008) Application of SAXS to the study of particle size-dependent thermal conductivity in silica nanofluids. J Nanopart Res. doi:10.1007/s11051-007-9347-y
  5. Chon CH, Kihm KD (2005) Thermal conductivity enhancement of nanofluids by Brownian motion. Trans ASME J Heat Transf 127:810. doi:10.1115/1.2033316 CrossRefGoogle Scholar
  6. Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependent thermal conductivity enhancement nanofluids. J Heat Transf 125:567–574CrossRefGoogle Scholar
  7. Feng Y, Yu B, Feng K, Xu P, Zou M (2008) Thermal conductivity of nanofluids and size distribution of nanoparticles by Monte Carlo simulation. J Nanopart Res. doi:10.1007/s11051-008-9363-6
  8. Gnedenko BV (1954) Course on the theory of probabilities. Gostehisdat, Moskow, p 312 (in Russian)Google Scholar
  9. Hadjov K (2008) Modified self-consistent scheme to predict the thermal conductivity of nano-fluids. Second International Congress on Automotive Safety and Environment, 23–25 October 2008, Craiova, RomaniaGoogle Scholar
  10. Jeulin D (2001) Caractérisation morphologique et modèles de structures aléatoires in Homo-généisation en mécanique des matériaux 1, Bornert M, Bretheau T, Gilormini P (dir.). Hermes Science, France, p 255Google Scholar
  11. Johnston PR (1998) Revisiting the most probable pore-size distribution in filter media: the gamma distribution. Filtr Sep 35(3):287–292. doi:10.1016/S0015-1882(98)90341-X CrossRefGoogle Scholar
  12. Karthikeyan NR, Philip J, Raj B (2008) Effect of clustering on the thermal conductivity of nanofluids. Mater Chem Phys 109(1):50–55. doi:10.1016/j.matchemphys.2007.10.029 CrossRefGoogle Scholar
  13. Prakash M, Giannelis EP (2007) Mechanism of heat transport in nanofluids. J Comput Aided Mater Des 14:109–117. doi:10.1007/s10820-006-9025-x CrossRefADSGoogle Scholar
  14. Saltiel C, Chen Q, Manickavasagam S, Schadler LS, Siegel RW, Menguc MP (2004) Identification of the dispersion behaviour of surface treated nanoscale powders. J Nanopart Res 6:35–46. doi:10.1023/B:NANO.0000023206.45991.dc CrossRefGoogle Scholar
  15. Tilaki RM, Iraji zad A, Mahdavi SM (2007) The effect of liquid environment on size and aggregation of gold nanoparticles prepared by pulsed laser ablation. J Nanopart Res 9:853–860. doi:10.1007/s11051-006-9143-0 CrossRefGoogle Scholar
  16. Wang BX, Zhou LP, Peng XF (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46:2665–2672. doi:10.1016/S0017-9310(03)00016-4 MATHCrossRefGoogle Scholar
  17. Xiang QW, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46:1–19. doi:10.1016/j.ijthermalsci.2006.06.010 CrossRefGoogle Scholar
  18. Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q (2002) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 9(7):4568–4572. doi:10.1063/1.1454184 CrossRefADSGoogle Scholar
  19. Yu BM, Zou MQ, Feng YJ (2005) Permeability of fractal porous media by Monte Carlo simulations. Int J Heat Mass Transf 48(13):2787–2794. doi:10.1016/j.ijheatmasstransfer.2005.02.008 CrossRefGoogle Scholar
  20. Zhang X, Gu H, Fujii M (2006) Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids. Int J Thermophys 27(2):569–580. doi:10.1007/s10765-006-0054-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.University of Chemical Technologies & MetallurgySofiaBulgaria

Personalised recommendations