Skip to main content
Log in

Enhanced thermal conductivity of nanofluids by nanoconvection and percolation network

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A new model which includes liquid molecule nanolayer, aggregation and nanoconvection is developed to discuss the enhanced thermal conductivity of nanofluids. Dimensionless numbers (particle size and thermal conductivity) are firstly defined, and it is confirmed that the particle size including powder and aggregate sizes is one of the key parameters to affect the thermal conductivity. It is found that the maximum enhancement of thermal conductivity is to be 64.4 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles In: International mechanical engineering congress and exhibition: San Francisco CA 12-17

  2. Keblinski P, Eastman JA, Cahill DG (2005) Nanofluids for thermal transport. Mater Today 8:36–44

    Article  Google Scholar 

  3. Das SK, Choi SUS, Yu W, Pradeep T (2007) Nanofluids: science and technology, 1st edn. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  4. Vajjha RS, Das DK (2012) A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties. Int J Heat Mass Transf 55:4063–4078

    Article  Google Scholar 

  5. Lee JH, Lee SH, Choi CJ, Jang SP, Choi SUS (2010) A review of thermal conductivity data, mechanisms and models for nanofluids. Int J Micro-Nano Scale Transp 1:269–322

    Article  Google Scholar 

  6. Wang XQ, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46:1–19

    Article  MATH  Google Scholar 

  7. Yu W, France DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 29:432–460

    Article  Google Scholar 

  8. Krishnamurthy S, Bhattacharya P, Phelan PE (2006) Enhanced mass transport in nanofluids. Nano Lett 6:419–423

    Article  Google Scholar 

  9. Saidur R, Leong KY, Mohammad HA (2011) A review on applications and challenges of nanofluids. Renew Sustain Energy Rev 15:1646–1668

    Article  Google Scholar 

  10. Özerinç S, Kakaç S, Yazıcıoğlu AG (2010) Enhanced thermal conductivity of nanofluids: a state of the art review. Microfluid Nanofluid 8:145–170

    Article  Google Scholar 

  11. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanism of heat flow in suspensions of nano-sized particles. Int J Heat Mass Transf 45:855–863

    Article  MATH  Google Scholar 

  12. Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: arenovated Maxwell model. J Nanoparticle Res 5:167–171

    Article  Google Scholar 

  13. Yu W, Choi SUS (2004) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton–Crosser model. J Nanoparticle Res 6:355–361

    Article  Google Scholar 

  14. Prasher R, Phelan PE, Bhattacharya P (2006) Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett 6:1529–1534

    Article  Google Scholar 

  15. Gao JW, Zheng RT, Ohtani H, Zhu DS, Chen G (2009) Experimental investigation of heat conduction mechanisms in nanofluids: clue on clustering. Nano Lett 9:4128–4132

    Article  Google Scholar 

  16. Wang JJ, Zheng RT, Gao JW, Chen G (2012) Heat conduction mechanisms in nanofluids and suspensions. Nano Today 7:124–136

    Article  Google Scholar 

  17. Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf 13:474–480

    Article  Google Scholar 

  18. Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316–4318

    Article  Google Scholar 

  19. Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanoparticle Res 6:577–588

    Article  Google Scholar 

  20. Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94:025901

    Article  Google Scholar 

  21. Pang C, Jung JY, Lee JW, Kang YT (2012) Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanoparticles. Int J Heat Mass Transf 55:5597–5602

    Article  Google Scholar 

  22. Maxwell-Garnett JC (1904) Colours in metal glasses and in metallic films. Philos Trans R Soc A 203:385–420

    Article  Google Scholar 

  23. Bruggeman DAG (1935) Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen. Ann der Phys Leipz 24:636–679

    Article  Google Scholar 

  24. Wang BX, Zhou LP, Peng XF (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46:2665–2672

    Article  MATH  Google Scholar 

  25. Hashimoto T, Fujimura M, Kawai H (1980) Domain-boundary structure of Styrene–Isoprene block copolymer films cast from solutions. 5. Molecular-weight dependence of spherical microdomains. Macromolecules 13:1660–1669

    Article  Google Scholar 

  26. Potanin AA, De Rooij R, Van den Ende D, Mellema J (1995) Microrheological modeling of weakly aggregated dispersions. J Chem Phys 102:5845

    Article  Google Scholar 

  27. Hunter RJ (2001) Foundations of colloid science. Oxford University Press, NY

    Google Scholar 

  28. Waite TD, Cleaver JK, Beattie JK (2001) Aggregation kinetics and fractal structure of γ-alumina assemblages. J Colloid Interface Sci 241:333–339

    Article  Google Scholar 

  29. Zheng R, Gao J, Wang J, Chen G (2011) Reversible temperature regulation of electrical and thermal conductivity using liquid-solid phase transitions. Nat Commun 2:289

    Article  Google Scholar 

  30. Chen G (2005) Nanoscale energy transport and conversion a parallel treatment of electrons, molecules, phonons and photons. Oxford University Press, NY

    Google Scholar 

  31. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581

    Article  Google Scholar 

  32. Hsu T Lecture notes on nanoscale heat transfer web site: http://www.engr.sjsu.edu/trhsu

  33. Kikugawa G, Ohara T, Kawaguchi T, Torigoe E, Hagiwara Y, Matsumoto Y (2009) A molecular dynamics study on heat transfer characteristics at the interfaces of alkanethiolate self-assembled monolayer and organic solvent. J Chem Phys 130:074706

    Article  Google Scholar 

  34. Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P (2008) Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Transf 51:1431–1438

    Article  MATH  Google Scholar 

  35. Dong RY, Cao BY (2014) Anomalous orientations of s rigid carbon nanotube in a sheared fluid. Sci Rep 4:6120. doi:10.1038/srep06120

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. 20100029120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Tae Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, C., Lee, J.W. & Kang, Y.T. Enhanced thermal conductivity of nanofluids by nanoconvection and percolation network. Heat Mass Transfer 52, 511–520 (2016). https://doi.org/10.1007/s00231-015-1569-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1569-4

Keywords

Navigation