Skip to main content
Log in

Can solid carbon materials be lighter than water and air?

  • Technology and Applications
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The number of possible hollow carbon molecules with a spatially closed structure is theoretically unlimited. Only a few have been studied up to now, mainly with relative small radiuses. If the structure is big enough, spatially closed, hollow, spherical, and with a monolayer shell, it will have a considerable elevating force when immersed in liquids or gases. Calculations demonstrate that it can be lighter than liquids and air when the molecule is over a certain size. Hollow multilayered carbon structures with such radiuses have already been reported. Development of new methods for synthesis of closed carbon molecules where the shell is reduced to a single layer will allow designing new materials, which are lighter than gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Бочвар ДА, Гальперн ЕГ (1973) О Гипотетических системах: карбододекраэдре, 8-икосаэдране и карбо-8-икосаедре. Докл. АН Н СССР 209(3):610–612

  • Ajie H, Alvarez MM, Anz SJ, Beck RD, Diederich F, Fostiropoulos K, Huffman DR, Kretschmer W, Rubin Y, Schriver KE, Sensharma D, Whetten RL (1990) Characterization of the soluble all-carbon molecules C60 and C70. J Phys Chem 94:8630–8633

    Article  CAS  Google Scholar 

  • Blank VD, Gorlova IG, Hutchison JL, Kiselev N, Ormont AB, Polyakov EV, Sloan J, Zakharov DN, Zybtsev SG (2000) The structure of nanotubes fabricated by carbon evaporation at high gas pressure. Carbon 38:217–1239

    Google Scholar 

  • Bowes MT, Kemper PR, Helden G, van Koppen PAM (1993) Gas-phase ion chromatography& transition metal state selection and carbon cluster formation. Science 260:1446–1451

    Article  Google Scholar 

  • Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292:706–709

    Article  CAS  Google Scholar 

  • Fowler PW (1993) Cylindrical fullerenes: the smallest nanotubes? J Phys Chem Solids 54(12):1825–1833

    Article  Google Scholar 

  • Fowler PW, Manolopoulos DE, Ryan RP (1992) Isomerisations of the fullerenes. Carbon 30(8):1235–1250

    Article  CAS  Google Scholar 

  • Haufler RE, Conceicao J, Chai Y, Chibante LPF, Byrne NE, Flanagan S, Haley MM, O’Brien SC, Pan C, Xiao Z, Biilups WE, Ciofolini MA, Hauge RH, Margave JL, Wilson LJ, Curl RF, Smalley RE (1990) Efficient production of C60 (Buckminsterfullerene), C60H36, and the solvated buckide ion. J Phys Chem 94:8634–8636

    Article  CAS  Google Scholar 

  • Hertel T, Walkup RE, Avouris P (1998) Deformation of carbon nanotubes by surface van der Waals forces. Phys Rev B 58:13870–13873

    Article  CAS  Google Scholar 

  • Howard JB, McKinnon JT, Makarovsky Y, Lafleur AL, Johnson ME (1991) Fullerenes C60 and C70 in flames. Nature 352:139–141

    Article  CAS  Google Scholar 

  • Jijima S (1980) Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. J Cryst Growth 50:675–683

    Article  Google Scholar 

  • Koprinarov N, Marinov M, Pchelarov G, Konstantinova M, Stefanov R (1995) Nanocarbons formed under AC arc discharge. J Phys Chem 99:2042–2047

    Article  CAS  Google Scholar 

  • Kretschmer W, Lamb lD, Fostiropoullos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358

    Article  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  • Lamb LD, Huffman DR, Workman RK, Howells S, Chen T, Sarid D, Ziolo RF (1992) Extraction and STM imaging of spherical giant fullerenes. Science 255:1413–1416

    Article  CAS  Google Scholar 

  • Li C, Chou T-W (2004) Elastic properties of single-walled carbon nanotubes in transverse directions. Phys Rev B69:073401, 1–3

    Google Scholar 

  • Lou Z, Chen Q, Gao J, Zhang Y (2004) Preparation of carbon spheres consisting of amorphous carbon cores and graphene shells. Carbon 42:219–238

    Article  Google Scholar 

  • Niwase K, Homae T, Nakamura KG, Kondo K (2002) Generation of giant carbon hollow spheres from C60 fullerene by shock-compression. Chem Phys Lett 362:47–50

    Article  CAS  Google Scholar 

  • Osawa E (1970) Kogaku (Kyoto), in Jap., 25:854–863

  • Parker DH, Wurz P, Chatterjee K, Lykke KR, Hunt JE, Pellin MJ, Stock lM (1991) High-yield synthesis, separation, and mass-spectrometric characterization of fullerenes C60 and C266. J Am Chem Soc 113:7499–7503

    Article  CAS  Google Scholar 

  • Patterson JR, Catledge SA, Vohra YK (2000) Nanodentation and X-ray diffraction studies of pressure-induced amorphization in C-70 fullerene. Appl Phys Lett 77(6):851–853

    Article  CAS  Google Scholar 

  • Rohlfing EA, Cox DM, Kaldor A (1984) Production and characterization of supersonic carbon cluster beams. J Chem Phys 81(12):3322–3330

    Article  CAS  Google Scholar 

  • Shinobara H, Sato H, Saito Y, Takayama M, Izuoka A, Sugawara T (1991) Formation and extraction of very large all-carbon fullerenes. J Phys Chem 95:8449–8451

    Article  Google Scholar 

  • Takahashi H, Goto T, Akiyama Y, Jeyadevan B, Tohji K, Matsuoka I (1996) A novel extraction method for fullerenes over C90 in large quantities using hydrothermal treatment. Mater Sci Eng A217/218:42–45

    CAS  Google Scholar 

  • Tang J, Qin L-C, Sasaki T, Yudasaka M, Matsushita A, Iijima S (2000) Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure. Phys Rev Lett 85(9):1887–1889

    Article  CAS  Google Scholar 

  • Taylor R, Hare JP, Abdul-Sada A, Kroto H (1990) Isolation, separation and characterization of the fullerenes C60 and C70; the third form of carbon. J Chem Soc, Chem Commun 1423–1425

  • Ugarte D (1992) Curling and closure of graphitic networks under electron-beam irradiation. Nature 359:707–709

    Article  CAS  Google Scholar 

  • Wilson MA, Pang LSK, Willett GD, Fisher KJ, Dance IG (1992) Fullerenes preparation, properties, and carbon chemistry. Carbon 30(4):675–693

    Article  CAS  Google Scholar 

  • Witten TA, Li H, Europhys (1993) Asymptotic shape of a fullerene ball. Lett 23:51–54

    Google Scholar 

  • Yacobson BI, Smalley RE (1997) Fullerene nanotubes: C 1,000,000. American Scientist online—the magazine of sigma XI, the scientific research society

  • Zhen-Ping Z, Yong-Da G (1996) Structure of carbon caps and formation of fullerenes. Carbon 34(2):173–178

    Article  Google Scholar 

  • Zhou X, Gu Z, Wu Y, Sun Y, Jin Z, Xiong Y, Sun B, Wu Y, Fu H, Wang J (1994) Separation of C60 and C70 fullerenes in gram quantities by fractional crystallization. Carbon 32(5):935–937

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Koprinarov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koprinarov, N., Konstantinova, M. Can solid carbon materials be lighter than water and air?. J Nanopart Res 9, 939–944 (2007). https://doi.org/10.1007/s11051-007-9229-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9229-3

Keywords

Navigation