Skip to main content
Log in

Visibly transparent & radiopaque inorganic organic composites from flame-made mixed-oxide fillers

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Radiopaque composites have been produced from flame-made ytterbium/silica mixed oxide within a crosslinked methacrylate resin matrix. The refractive index of the filler powder increased with ytterbium oxide loading. A high transparency was achieved for a matching refractive index of the filler powder and the polymer in comparison to commercial materials with 52 wt% ceramic filling. It was demonstrated that powder homogeneity with regard to particle morphology and distribution of the individual metal atoms is essential to obtain a highly transparent composite. In contrast, segregation of crystalline single-oxide phases drastically decreased the composite transparency despite similar specific surface areas, refractive indices and overall composition. The superior physical strength, transparency and radiopacity compared to composites made from conventional silica based-fillers makes the flame-made mixed-oxide fillers especially attractive for dental restoration materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asefa T., Yoshina-Ishii C., MacLachlan M.J., and Ozin G.A. (2000). New nanocomposites: putting organic function “inside” the channel walls of periodic mesoporous silica. Journal of Materials Chemistry 10(8): 1751–1755

    Article  CAS  Google Scholar 

  • Boury B., and Corriu R.J.P. (2000). Adjusting the porosity of a silica-based hybrid material. Advanced Materials 12(13): 989–992

    Article  CAS  Google Scholar 

  • Choudhury K.R., Winiarz J.G., Samoc M., and Prasad P.N. (2003). Charge carrier mobility in an organic-inorganic hybrid nanocomposite. Applied Physics Letters 82(3): 406–408

    Article  CAS  Google Scholar 

  • Combe E. C., Burke F. J. T., and Douglas W. H. (1999). Dental Biomaterials. Kluwer Academic Publ, Boston

    Google Scholar 

  • Dean J.A., 1999. Table 3.2 Physical constants of inorganic compounds. Lange’s Handbook of Chemistry, McGraw-Hill Inc., New York

  • Guo S. Q., Hirosaki N., Yamamoto Y., Nishimura T., and Mitomo M. (2001). Dependence of fracture stress on applied stress rate in a Yb2O3-SiO2-doped hot-pressed silicon nitride ceramic. Journal of Materials Research 16(11): 3254–3261

    CAS  Google Scholar 

  • Hehlen M.P., N.J. Cockroft, T. R. Gosnell & Bruce A.J. (1997). Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses. Physical Review B 56(15): 9302–9318

    Article  CAS  Google Scholar 

  • Jossen R., S.E. Pratsinis, W.J. Stark & L. Mädler. Criteria for flame-spray synthesis of hollow, shell-like or inhomogeneous oxides. J. Am. Ceram. Soc., In press

  • Klapdohr S. & N. Moszner, 2005. Inorganic Components for dental filling composites. Monatsh. Chem. 136, 21–45

    Google Scholar 

  • Klemm H., and Pezzotti G. (1994). Fracture-Toughness and Time-Dependent Strength Behavior of Low- Doped Silicon Nitrides for Applications at 1400°C. Journal of the American Ceramic Society 77(2): 553–561

    Article  CAS  Google Scholar 

  • Krumeich F., Muhr H.J., Niederberger M., Bieri F., and Nesper R. (2000). The cross-sectional structure of vanadium oxide nanotubes studied by transmission electron microscopy and electron spectroscopic imaging. Zeitschrift Fur Anorganische Und Allgemeine Chemie 626(10): 2208–2216

    Article  CAS  Google Scholar 

  • Liang J. J., Navrotsky A., Ludwig T., Seifert H. J., and Aldinger F. (1999). Enthalpy of formation of rare-earth silicates Y2SiO5 and Yb2SiO5 and N-containing silicate Y10(SiO4)6N2. Journal of Materials Research 14(4): 1181–1185

    CAS  Google Scholar 

  • Mädler L., Kammler H. K., Mueller R., and Pratsinis S. E. (2002a). Controlled synthesis of nanostructured particles by flame spray pyrolysis. Journal of Aerosol Science 33(2): 369–389

    Article  Google Scholar 

  • Mädler L., and Pratsinis S. E. (2002). Bismuth oxide nanoparticles by flame spray pyrolysis. Journal of the American Ceramic Society 85(7): 1713–1718

    Article  Google Scholar 

  • Mädler L., Stark W. J., and Pratsinis S. E. (2002b). Flame-made ceria nanoparticles. Journal of Materials Research 17(6): 1356–1362

    Google Scholar 

  • Mädler L., Stark W. J., and Pratsinis S. E. (2003). Simultaneous deposition of Au nanoparticles during flame synthesis of TiO2 and SiO2. Journal of Materials Research 18(1): 115–120

    Google Scholar 

  • McLean J. H. (1965). Significance of Becke Line Refractive Indices in Synthetic Fibers. Textile Research Journal 35(3): 242–244

    Google Scholar 

  • Medenbach O., Dettmar D., Shannon R. D., Fischer R. X., and Yen W. M. (2001). Refractive index and optical dispersion of rare earth oxides using a small-prism technique. Journal of Optics a-Pure and Applied Optics 3(3): 174–177

    Article  CAS  Google Scholar 

  • Morse T.F., 2003. US Patent 6 546 757 B1

  • Moszner N., and Klapdohr S. (2004). Nanotechnology for dental composites. Int. J. of Nanotechnology 1(1/2): 130–156

    CAS  Google Scholar 

  • Moszner N., and Salz U. (2001). New developments of polymeric dental composites. Progress in Polymer Science 26(4): 535–576

    Article  CAS  Google Scholar 

  • Mueller R., Kammler H. K., Pratsinis S. E., Vital A., Beaucage G., and Burtscher P. (2004). Non-agglomerated dry silica nanoparticles. Powder Technology 140(1-2): 40–48

    Article  CAS  Google Scholar 

  • Nussbaumer R. J., Caseri W., Tervoort T., and Smith P. (2002). Synthesis and characterization of surface-modified rutile nanoparticles and transparent polymer composites thereof. Journal of Nanoparticle Research 4(4): 319–323

    Article  CAS  Google Scholar 

  • Rheinberger V., U. Salz, W. Hoeland, A. Rumphorst, K. Grabher, U.K. Fischer, M. Schweiger & N. Moszner, 1999. Polymerizable dental composite material. Eur. Pat. Appl. EP 923925 A2 19990623, Liechtenstein

  • Saveyn H., Mermuys D., Thas O., and van der Meeren P. (2002). Determination of the refractive index of water-dispersible granules for use in laser diffraction experiments. Particle & Particle Systems Characterization 19(6): 426–432

    Article  CAS  Google Scholar 

  • Schulz H., L. Mädler, S.E. Pratsinis, P. Burtscher & N. Moszner, 2005. Flame-made Ta2O5/SiO2 particles with controlled refractive index and nanocomposite transparency. Adv. Funct. Mater. 15(5), 830–837

    Google Scholar 

  • Simpson J.O. & A.K. St. Clair, 1997. Fundamental insight on developing low dielectric constant polyimides. Thin Solid Films 308, 480–485

  • Stoiber R. E., and Morse S. A. (1994). Crystal Identification with the Polarizing Microscope. Chapman & Hall, London

    Google Scholar 

  • Tani T., Mädler L., and Pratsinis S. E. (2002). Synthesis of zinc oxide/silica composite nanoparticles by flame spray pyrolysis. Journal of Materials Science 37(21): 4627–4632

    Article  CAS  Google Scholar 

  • Toropov N.A. & I.A. Bondar, 1961. Silicates of the rare earth elements. Div. Chem. Sci. 8, 1278–1284

    Google Scholar 

  • Wu B., Chu P. L., and Arkwright J. (1995). Ytterbium-doped silica slab waveguide with large nonlinearity. Ieee Photonics Technology Letters 7(12): 1450–1452

    Article  Google Scholar 

  • Wypych G. (1999). Handbooks of Fillers. Chem. Tec. Publishing, Toronto

    Google Scholar 

  • Yamamoto T., Matsuyama T., Tanaka T., Funabiki T., and Yoshida S. (1999a). Generation of acid sites on silica-supported rare earth oxide catalysts: Structural characterization and catalysis for alpha- pinene isomerization. Physical Chemistry Chemical Physics 1(11): 2841–2849

    Article  CAS  Google Scholar 

  • Yamamoto T., Tanaka T., Matsuyama T., Funabiki T., and Yoshida S. (1999b). XAFS study of the structure of the silica-supported ytterbium oxide catalyst. Solid State Communications 111(3): 137–142

    Article  CAS  Google Scholar 

  • Zantner C., Kielbassa A.M., Martus P., and Kunzelmann K.H. (2004). Sliding wear of 19 commercially available composites and compomers. Dental Materials 20(3): 277–285

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The research was supported by the Kommission für Technologie und Innovation (KTI) TOP NANO 21, Grant No. 5929.1, Switzerland. We gratefully acknowledge the technical support on the refractive index measurements of H. Schulz and D. Stratakis (ETH Zurich). Stimulating discussions with Prof. S.E. Pratsinis, H. Schulz, R. Mueller, M.J. Height (ETH Zurich) are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Mädler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mädler, L., Krumeich, F., Burtscher, P. et al. Visibly transparent & radiopaque inorganic organic composites from flame-made mixed-oxide fillers. J Nanopart Res 8, 323–333 (2006). https://doi.org/10.1007/s11051-005-9007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-9007-z

Keywords

Navigation