Skip to main content

Advertisement

Log in

Polymer-infiltrated layered silicates for dental restorative materials

  • Published:
Rare Metals Aims and scope Submit manuscript

A Correction to this article was published on 20 January 2020

This article has been updated

Abstract

Layered porous ceramic used for polymer-infiltrated-ceramic-network materials (PICNs) may be a promising candidate for dental restoration. The effect of sintering temperature of ceramic green bodies on mechanical and optical properties of PICNs is unclear. The purpose was to fabricate PICNs and evaluate their mechanical and optical properties. Polymer-infiltrated layered silicates for dental restorative materials were prepared via infiltrating polymerizable monomers into partially sintered porous silicates and thermo-curing. Bending samples for flexural strength and fracture toughness were fabricated (sample numbers of n = 15). Vickers hardness and elastic modulus were measured via nano-indentation (n = 10). One-way ANOVA and Weibull statistics were used for statistical analysis. Optical property was characterized by spectral reflectance. Brittleness index was used to characterize the machinability of the materials. Microstructures and phase structures were investigated using scanning electron microscopy (SEM) and X-ray diffractometer (XRD), respectively. Flexural strength of polymer-infiltrated layered silicates varied from 91.29 to 155.19 MPa, fracture toughness ranged from 1.186 to 1.782 MPa·m1/2, Vickers hardness ranged from 1.165 to 9.596 GPa, and elastic modulus ranged from 25.35 to 100.50 GPa. The formed glass phases at 1200 and 1300 °C showed influences on corresponding optical property, which could be observed from spectral reflectance. A kind of PICNs was fabricated by infiltrating polymerizable monomers into layered porous ceramic networks. Sintering temperature could have dramatic effects on the mechanical and optical properties of porous ceramics and PICNs. These kinds of materials possess similar properties to that of natural tooth and could be used for dental restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 20 January 2020

    In the original publication, Sect. 2.1 was published incorrectly as below.

References

  1. He LH, Swain M. A novel polymer infiltrated ceramic dental material. Dent Mater. 2011;27(6):527.

    CAS  Google Scholar 

  2. Sripetchdanond J, Leevailoj C. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study. J Prosthet Dent. 2014;112(5):1141.

    CAS  Google Scholar 

  3. Kim M, Oh S, Kim J, Ju S, Seo D, Jun S, Ahn J, Ryu J. Wear evaluation of the human enamel opposing different Y-TZP dental ceramics and other porcelains. J Dent. 2012;40(11):979.

    CAS  Google Scholar 

  4. Lawson NC, Janyavula S, Syklawer S, McLaren EA, Burgess JO. Wear of enamel opposing zirconia and lithium disilicate after adjustment, polishing and glazing. J Dent. 2014;42(12):1586.

    CAS  Google Scholar 

  5. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations: Part II: zirconia veneering ceramics. Dent Mater. 2006;22(9):857.

    CAS  Google Scholar 

  6. Kelly JR. Clinically relevant approach to failure testing of all- ceramic restorations. J Prosthet Dent. 1999;81(6):652.

    CAS  Google Scholar 

  7. Gemalmaz D, Ergin Ş. Clinical evaluation of all-ceramic crowns. J Prosthet Dent. 2002;87(2):189.

    Google Scholar 

  8. Manicone PF, Rossi Iommetti P, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications. J Dent. 2007;35(11):819.

    CAS  Google Scholar 

  9. Swain MV, Coldea A, Bilkhair A, Guess PC. Interpenetrating network ceramic-resin composite dental restorative materials. Dent Mater. 2016;32(1):34.

    CAS  Google Scholar 

  10. Chen M. Update on dental nanocomposites. J Dent Res. 2010;89(6):549.

    CAS  Google Scholar 

  11. Ferracane JL. Resin composite—state of the art. Dent Mater. 2011;27(1):29.

    CAS  Google Scholar 

  12. Moszner N, Salz U. New developments of polymeric dental composites. Prog Polym Sci. 2001;26(4):535.

    CAS  Google Scholar 

  13. Moszner N, Hirt T. New polymer-chemical developments in clinical dental polymer materials: enamel–dentin adhesives and restorative composites. J Polym Sci Part A: Polym Chem. 2012;50(21):4369.

    CAS  Google Scholar 

  14. Della Bona A, Corazza PH, Zhang Y. Characterization of a polymer-infiltrated ceramic-network material. Dent Mater. 2014;30(5):564.

    CAS  Google Scholar 

  15. Okada K, Kameya T, Ishino H, Hayakawa T. A novel technique for preparing dental CAD/CAM composite resin blocks using the filler press and monomer infiltration method. Dent Mater J. 2014;33(2):203.

    Google Scholar 

  16. Nguyen JF, Ruse D, Phan AC, Sadoun MJ. High-temperature-pressure polymerized resin-infiltrated ceramic networks. J Dent Res. 2014;93(1):62.

    CAS  Google Scholar 

  17. Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater. 2013;29(4):419.

    CAS  Google Scholar 

  18. Nguyen J, Migonney V, Ruse ND, Sadoun M. Resin composite blocks via high-pressure high-temperature polymerization. Dent Mater. 2012;28(5):529.

    CAS  Google Scholar 

  19. Nguyen J, Migonney V, Ruse ND, Sadoun M. Properties of experimental urethane dimethacrylate-based dental resin composite blocks obtained via thermo-polymerization under high pressure. Dent Mater. 2013;29(5):535.

    CAS  Google Scholar 

  20. Eldafrawy M, Nguyen JF, Mainjot AK, Sadoun MJ. A functionally graded picn material for biomimetic CAD/CAM blocks. J Dent Res. 2018;97(12):1324.

    CAS  Google Scholar 

  21. Satterthwaite JD, Maisuria A, Vogel K, Watts DC. Effect of resin-composite filler particle size and shape on shrinkage-stress. Dent Mater. 2012;28(6):609.

    CAS  Google Scholar 

  22. Suzuki S, Nagai E, Taira Y, Minesaki Y. In vitro wear of indirect composite restoratives. J Prosthet Dent. 2002;88(4):431.

    CAS  Google Scholar 

  23. Wille S, Hölken I, Haidarschin G, Adelung R, Kern M. Biaxial flexural strength of new Bis-GMA/TEGDMA based composites with different fillers for dental applications. Dent Mater. 2016;32(9):1073.

    CAS  Google Scholar 

  24. Randolph LD, Palin WM, Leloup G, Leprince JG. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dent Mater. 2016;32(12):1586.

    CAS  Google Scholar 

  25. Li J, Zhang X, Cui B, Lin Y, Deng X, Li M, Nan C. Mechanical performance of polymer-infiltrated zirconia ceramics. J Dent. 2017;58:60.

    Google Scholar 

  26. Wang H, Cui B, Li J, Li S, Lin Y, Liu D, Li M. Mechanical properties and biocompatibility of polymer infiltrated sodium aluminum silicate restorative composites. J Adv Ceram. 2017;6(1):73.

    CAS  Google Scholar 

  27. Cui B, Li J, Wang H, Lin Y, Shen Y, Li M, Deng X, Nan C. Mechanical properties of polymer-infiltrated-ceramic (sodium aluminum silicate) composites for dental restoration. J Dent. 2017;62:91.

    CAS  Google Scholar 

  28. Lawn BR, Marshall DB. Hardness, toughness, and brittleness: an indentation analysis. J Am Ceram Soc. 1979;62(7–8):347.

    CAS  Google Scholar 

  29. Braga RR, Denry IL, Ferracane JL, Khajotia SS, Mahler DB, Marshall GW, Marshall SJ, Mitchell JC, Mitra SB, Muenchinger KL, Pfeifer CS, Powers JM, Sakaguchi RL. Craig’s restorative dental materials (thirteenth edition). Edited by Sakaguchi RL, Powers JM. Saint Louis: Mosby.2012.16.

  30. Cuy JL, Mann AB, Livi KJ, Teaford MF, Weihs TP. Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch Oral Biol. 2002;47(4):281.

    CAS  Google Scholar 

  31. Jeng Y, Lin T, Hsu H, Chang H, Shieh D. Human enamel rod presents anisotropic nanotribological properties. J Mech Behav Biomed. 2011;4(4):515.

    Google Scholar 

  32. White SN, Luo W, Paine ML, Fong H, Sarikaya M, Snead ML. Biological organization of hydroxyapatite crystallites into a fibrous continuum toughens and controls anisotropy in human enamel. J Dent Res. 2001;80(1):321.

    CAS  Google Scholar 

  33. Della Bona A, Anusavice KJ, DeHoff PH. Weibull analysis and flexural strength of hot-pressed core and veneered ceramic structures. Dent Mater. 2003;19(7):662.

    CAS  Google Scholar 

  34. Danzer R, Fischer FD, Lu C. Fracture statistics of brittle materials: Weibull or normal distribution. Phys Rev E. 2002;65(6):67102.

    Google Scholar 

  35. Ruales-Carrera E, Cesar PF, Henriques B, Fredel MC, Özcan M, Volpato CAM. Microtensile bond strength of zirconia after surface treatments and aging. Dent Mater. 2018;34:100.

    Google Scholar 

  36. Sen N, Us YO. Mechanical and optical properties of monolithic CAD–CAM restorative materials. J Prosthet Dent. 2018;119(4):593.

    CAS  Google Scholar 

  37. Gradl R, Zanette I, Ruiz-Yaniz M, Dierolf M, Rack A, Zaslansky P, Pfeiffer F. Mass density measurement of mineralized tissue with grating-based X-ray phase tomography. PLoS ONE. 2016;11(12):e167797.

    Google Scholar 

  38. Miyagawa Y, Powers JM, O’Brien WJ. Optical properties of direct restorative materials. J Dent Res. 1981;60(5):890.

    CAS  Google Scholar 

  39. Chimanski A, Cesar PF, Yoshimura HN. Effects of glass chemistry on the optical properties of highly translucent alumina-glass biocomposites for dental restorations. Ceram Int. 2017;43(16):13970.

    CAS  Google Scholar 

  40. Della Bona A, Nogueira AD, Pecho OE. Optical properties of CAD–CAM ceramic systems. J Dent. 2014;42(9):1202.

    CAS  Google Scholar 

  41. Jin J, Li XH, Wu JW, Lou BY. Improving tribological and corrosion resistance of Ti6Al4V alloy by hybrid microarc oxidation/enameling treatments. Rare Met. 2018;37(1):26.

    CAS  Google Scholar 

  42. Zhao DP, Tang JC, Nie HM, Zhang Y, Chen YK, Zhang X, Li HX, Yan M. Macro-micron-nano-featured surface topography of Ti–6Al–4V alloy for biomedical applications. Rare Met. 2018;37(12):1055.

    CAS  Google Scholar 

  43. Yuan BG, Yu HP, Li CF, Sun DL. Wear properties of nonhydrogenated, hydrogenated, and dehydrogenated Ti6Al4V alloy. Rare Met. 2018;37(7):574.

    Google Scholar 

  44. Cesar PF, Yoshimura HN, Miranda WG Jr, Miyazaki CL, Muta LM, Filho LER. Relationship between fracture toughness and flexural strength in dental porcelains. J Biomed Mater Res B Appl Biomater. 2006;78(2):265.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Beijing Municipal Science and Technology Commission (No. Z171100002017009) and the National Natural Science Foundation of China (Nos. 51532003, 51221291, 51328203 and 81671026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Hua Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, BC., Li, J., Lin, YH. et al. Polymer-infiltrated layered silicates for dental restorative materials. Rare Met. 38, 1003–1014 (2019). https://doi.org/10.1007/s12598-019-01267-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01267-6

Keywords

Navigation