Skip to main content

Advertisement

Log in

Quantification of Dermatophyte Viability for Evaluation of Antifungal Effect by Quantitative PCR

  • Published:
Mycopathologia Aims and scope Submit manuscript

An Erratum to this article was published on 09 December 2014

Abstract

Dermatophytosis is a common disease caused by dermatophyte fungi such as Trichophyton rubrum and Trichophyton mentagrophytes. A method of quantifying fungal viability in the lesions of dermatophytosis is indispensable for understanding the therapeutic process and outcome; however, no such method has yet been developed. The aim of this study was to develop a method for quantifying dermatophyte viability by quantitative polymerase chain reaction (qPCR). The internal transcribed spacer (ITS) and D1/D2 regions, including each of rRNA and rDNA, were chosen as the targets, and dermatophyte-specific primer pairs were designed corresponding to ITS and D1/D2 regions. The amounts of target RNA and DNA after heat or antifungal treatment were measured by qPCR and compared with colony-forming unit (CFU) counts. RNA and DNA could extract from dermatophytes by mechanical pulverization of conidia using a Multi-Beads Shocker cell disruptor. Our method was sufficiently sensitive to detect 10 copies by qPCR using both ITS and D1/D2 primer pairs. The most sensitive target was ITS-cDNA after heat or antifungal treatment, and essentially consistent with CFU counts. On the other hands, ITS-DNA and D1/D2-DNA were not decreased soon after heat or antifungal treatment, but those were decreased significantly and reflected the CFU counts after 48 h of antifungal treatment. We conclude that ITS-cDNA is useful mainly for quantifying dermatophyte viability at early responses, but ITS-DNA and D1/D2-DNA are also available for evaluation, which does not need an early response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Watanabe S, Nishimoto K, Asanuma H, Kusunoki T, Higashi N, Koga T, et al. An epidemiological study to assess the prevalence of Tinea Pedis et Ungium in Japan. J Dermatol. 2001;111(14):2101–12.

    Google Scholar 

  2. Burzykowski T, Molenberghs G, Abeck D, Haneke E, Hay R, Katsambas A, et al. High prevalence of foot diseases in Europe: results of the Achilles Project. Mycoses. 2003;46(11–12):496–505.

    Article  CAS  PubMed  Google Scholar 

  3. Nishimoto K. An epidemiological survey of dermatomycoses in Japan, 2002. Nippon Ishinkin Gakkai Zasshi. 2006;47(2):103–11.

    Article  Google Scholar 

  4. Sei Y. 2006 epidemiological survey of dermatomycoses in Japan. Med Mycol J. 2012;53(3):185–92.

    Article  PubMed  Google Scholar 

  5. Yoshimura R, Ito Y, Morishita N, Ninomiya J, Takiuchi I. Comparative study between culture and PCR-RFLP analysis on identification of the causative agent of Tinea Unguium. Nippon Ishinkin Gakkai Zasshi. 2006;47(1):11–4.

    Article  CAS  Google Scholar 

  6. Pierard GE, Arrese JE, De Doncker P, Pierard-Franchimont C. Present and potential diagnostic techniques in onychomycosis. J Am Acad Dermatol. 1996;34(2 Pt 1):273–7.

    Article  CAS  PubMed  Google Scholar 

  7. Hongcharu W, Dwyer P, Gonzalez S, Anderson RR. Confirmation of onychomycosis by in vivo confocal microscopy. J Am Acad Dermatol. 2000;42(2 Pt 1):214–6.

    Article  CAS  PubMed  Google Scholar 

  8. Mochizuki T, Sugita Y, Makimura K, Kim JA, Kano R, Takahashi I, et al. Advances in molecular biology of dermatophytes. Nippon Ishinkin Gakkai Zasshi. 2001;42(2):81–6.

    Article  CAS  Google Scholar 

  9. Binstock JM. Molecular biology techniques for identifying dermatophytes and their possible use in diagnosing onychomycosis in human toenail: a review. J Am Podiatr Med Assoc. 2007;97(2):134–44.

    Article  PubMed  Google Scholar 

  10. Hay RJ, Jones RM. New molecular tools in the diagnosis of superficial fungal infections. Clin Dermatol. 2010;28(2):190–6.

    Article  PubMed  Google Scholar 

  11. Graser Y, Czaika V, Ohst T. Diagnostic PCR of dermatophytes—an overview. Journal der Deutschen Dermatologischen Gesellschaft. J Ger Soc Dermatol JDDG. 2012;10(10):721–6.

    Google Scholar 

  12. Kardjeva V, Summerbell R, Kantardjiev T, Devliotou-Panagiotidou D, Sotiriou E, Graser Y. Forty-eight-hour diagnosis of onychomycosis with subtyping of Trichophyton rubrum strains. J Clin Microbiol. 2006;44(4):1419–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Monod M, Bontems O, Zaugg C, Lechenne B, Fratti M, Panizzon R. Fast and reliable PCR/sequencing/RFLP assay for identification of fungi in onychomycoses. J Med Microbiol. 2006;55(Pt 9):1211–6.

    Article  CAS  PubMed  Google Scholar 

  14. Bontems O, Hauser PM, Monod M. Evaluation of a polymerase chain reaction-restriction fragment length polymorphism assay for dermatophyte and nondermatophyte identification in onychomycosis. Br J Dermatol. 2009;161(4):791–6.

    Article  CAS  PubMed  Google Scholar 

  15. Bergmans AM, Schouls LM, van der Ent M, Klaassen A, Bohm N, Wintermans RG. Validation of PCR-reverse line blot, a method for rapid detection and identification of nine dermatophyte species in nail, skin and hair samples. Clin Microbiol Infect. 2008;14(8):778–88.

    Article  CAS  PubMed  Google Scholar 

  16. Brillowska-Dabrowska A, Saunte DM, Arendrup MC. Five-hour diagnosis of dermatophyte nail infections with specific detection of Trichophyton rubrum. J Clin Microbiol. 2007;45(4):1200–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Li XF, Tian W, Wang H, Chen H, Shen YN, Lv GX, et al. Direct detection and differentiation of causative fungi of onychomycosis by multiplex polymerase chain reaction-based assay. Eur J Dermatol EJD. 2011;21(1):37–42.

    Google Scholar 

  18. Berk E, Kustimur S, Kalkanci A, Oztas OM. DNA extraction and identification of Trichophyton rubrum by real-time polymerase chain reaction from direct nail scraping specimens of patients with onychomycosis. Mikrobiyoloji bulteni. 2011;45(1):150–8.

    CAS  PubMed  Google Scholar 

  19. Gupta AK, Zaman M, Singh J. Fast and sensitive detection of Trichophyton rubrum DNA from the nail samples of patients with onychomycosis by a double-round polymerase chain reaction-based assay. Br J Dermatol. 2007;157(4):698–703.

    Article  CAS  PubMed  Google Scholar 

  20. Ebihara M, Makimura K, Sato K, Abe S, Tsuboi R. Molecular detection of dermatophytes and nondermatophytes in onychomycosis by nested polymerase chain reaction based on 28S ribosomal RNA gene sequences. Br J Dermatol. 2009;161(5):1038–44.

    Article  CAS  PubMed  Google Scholar 

  21. Makimura K, Murayama SY, Yamaguchi H. Detection of a wide range of medically important fungi by the polymerase chain reaction. J Med Microbiol. 1994;40(5):358–64.

    Article  CAS  PubMed  Google Scholar 

  22. Makimura K, Mochizuki T, Hasegawa A, Uchida K, Saito H, Yamaguchi H. Phylogenetic classification of Trichophyton mentagrophytes complex strains based on DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions. J Clin Microbiol. 1998;36(9):2629–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis A, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. California, USA: Academic Press; 1990. pp. 315–22.

  24. Yanagihara M, Kawasaki M, Ishizaki H, Anzawa K, Udagawa S-I, Mochizuki T, et al. Tiny keratotic brown lesions on the interdigital web between the toes of a healthy man caused by Curvularia species infection and a review of cutaneous Curvularia infections. Mycoscience. 2010;51(3):224–33.

    Article  Google Scholar 

  25. Hiratani T, Asagi Y, Yamaguchi H. Evaluation of in vitro antimycotic activity of terbinafine, a new allylamine agent. Jpn J Med Mycol. 1991;32:323–32.

    Article  CAS  Google Scholar 

  26. Hofbauer B, Leitner I, Ryder NS. In vitro susceptibility of Microsporum canis and other dermatophyte isolates from veterinary infections during therapy with terbinafine or griseofulvin. Med Mycol. 2002;40(2):179–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwanaga Tomoyuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomoyuki, I., Kazushi, A. & Takashi, M. Quantification of Dermatophyte Viability for Evaluation of Antifungal Effect by Quantitative PCR. Mycopathologia 177, 241–249 (2014). https://doi.org/10.1007/s11046-014-9745-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-014-9745-5

Keywords

Navigation