Skip to main content

Advertisement

Log in

Swift augmented human–robot dynamics modeling for rehabilitation planning analyses

  • Research
  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

With the widespread implementation of robotics exoskeletons in rehabilitation, modeling and dynamics analysis of such highly nonlinear coupled systems has become significantly important. In this paper, a swift numerical human–robot dynamics modeling has been developed to achieve accurate and realistic interpretation. This takes into consideration the separation and impact between multiple bodies for rehabilitation planning. To this end, first, a novel parallel algorithm combined with sequential interaction conditions is proposed based on the numerical recursive Newton–Euler method. The approach begins by deriving separated numerical models for the complicated system: i.e. both the human and the robot. These models are then augmented, with a primary focus on reducing the error of the interaction conditions, including forces and positions. The accuracy of the proposed model, with a computational complexity of O(n), is assessed by comparing to a previously validated nonrecursive analytical model with a higher computational complexity of O(n^4). Additionally, the quality of the connection between the human and the robot is assessed to establish a suitable control objective and an effective interaction strategy for rehabilitation planning. The study employs a lower-limb walking assistive robot developed in the ARAS lab (RoboWalk) to validate the proposed method. The algorithm is empirically implemented on the RoboWalk test stand, ensuring the integrity of the proposed dynamics modeling. The human–robot interaction forces are estimated with an accuracy of 2 N, in the presence of friction and measurement noise. Finally, the effectiveness of the model-based controller is assessed by using the proposed method, providing valuable tools for the enhancement of overall performance of such a complex dynamics system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Algorithm 2
Algorithm 3
Algorithm 4
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. Plücker coordinates are a system of coordinates for representing lines in space. They are named after Julius Plücker, who introduced them in the 1860s. This system utilizes a pair of vectors to capture the essence of a line. The first three Plücker coordinates represent the direction of the line, while the last three Plücker coordinates represent the moment vector that lies perpendicular to the line and intersects it at a specific point. Together, the six components of these vectors, referred to as Plücker coordinates, provide a comprehensive representation of the line. Plücker coordinates offer several advantages over traditional methods of representing lines. They are compact, invariant under translation and rotation, and possess valuable geometric properties. These characteristics make them particularly well suited for applications in rigid body dynamics, where they facilitate the analysis of motion, forces, and torques acting on rigid bodies. Whether in robotics, physics, or automotive engineering, Plücker coordinates stand as a powerful tool for understanding and manipulating the motion of objects in three-dimensional space [45].

  2. Plücker coordinates.

Abbreviations

\(\boldsymbol{a}_{i}\) :

Spatial acceleration of body \(i\)

\(\boldsymbol{C}\) :

A 10 × 1 vector represents Coriolis, centrifugal, and gyration effects of the user multibody dynamics systems

\(\boldsymbol{F}_{ext}\) :

External forces applied to the model in workspace

\({}^{stance} \boldsymbol{F}_{ext}^{foot}\) :

Stance foot external forces in workspace

\({}^{swing} \boldsymbol{F}_{ext}^{foot}\) :

Swing foot external forces in workspace

\(\boldsymbol{F}_{ext}^{HJ}\) :

External forces on the hypothetical joint of the model in workspace

\(\boldsymbol{F}_{i}^{B}\) :

The net spatial force applied to body \(i\)

\(\boldsymbol{F}_{i}^{ext}\) :

External spatial force applied to body \(i\)

\(\boldsymbol{F}_{int}\) :

Robot–user interaction forces at feet and saddle in workspace

\(\boldsymbol{F}_{int}^{A_{L}}\), \(\boldsymbol{F}_{int}^{A_{R}}\) :

Known forces applied to the RoboWalk ankle joint

\(\boldsymbol{F}_{int}^{seat}\) :

Assistive force applied to the user

\({}^{v} \boldsymbol{F}_{int}^{seat}\) :

Robot saddle vertical interaction force in workspace

\(\boldsymbol{F}_{j}\) :

The spatial force applied by body \(i\) to its successor body \(j\)

\(\boldsymbol{G}\) :

A 10 × 1 vector represents the gravity effects of the user multibody dynamics systems

\(\boldsymbol{I}_{i}\) :

Spatial moment of inertia of body \(i\)

\(\boldsymbol{J}_{A_{L}}\), \(\boldsymbol{J}_{A_{R}}\) :

Robot’s left and right ankle Jacobian

\(\boldsymbol{J}_{FRF}\) :

Jacobian of the contact point

\(\boldsymbol{J}_{s}\) :

Jacobian of saddle force applying point

\(l_{1}\) :

The radius of the saddle of the robot

\(l_{3}\), \(l_{2}\) :

The length of the shank and thigh of the robot

\(\boldsymbol{M}\) :

Represents a 10 × 10 inertia matrix of the user multibody dynamics systems

\({}^{\boldsymbol{i}} \boldsymbol{P}_{\boldsymbol{P}_{\boldsymbol{i}}}\) :

The translation vector from \(\boldsymbol{P}_{\boldsymbol{i}}\) to \(\boldsymbol{i}\)

\(\boldsymbol{q}\) :

Position of the model joints in joint space

\(\dot{\boldsymbol{q}}\) :

Velocity of the model joints in joint space

\(\ddot{\boldsymbol{q}}\) :

Acceleration of the model joints in joint space

\({}^{\boldsymbol{i}} \boldsymbol{R}_{\boldsymbol{P}_{\boldsymbol{i}}}\) :

The rotation matrix from \(\boldsymbol{P}_{\boldsymbol{i}}\) to \(\boldsymbol{i}\)

\(S_{robot}\) :

Robot model switch parameter

\(S_{user}\) :

User’s foot switch sensor

\(\boldsymbol{v}_{i}\) :

Spatial velocity of body \(i \)

\(\mathbf{X}\) :

A 6 × 6 transfer matrix from one coordinate system to another

\(X_{ankle}\) :

X coordinate of the robot ankle in Cartesian workspace

\(\boldsymbol{X}_{feet}\) :

Positions of the robot or user ankles in workspace

\({}^{stance\_foot} \boldsymbol{X}_{HJ}\) :

Force transfer matrices from the user hypothetical joint to stance foot

\(X_{saddle}\) :

X coordinate of the robot saddle in Cartesian workspace

\(\boldsymbol{X}_{seat}\) :

Positions of the robot saddle in workspace

\({}^{v} \ddot{\boldsymbol{X}}_{seat}\) :

Vertical part of the robot saddle acceleration in workspace

\({}^{HJ} \boldsymbol{X}_{stance\_foot}\) :

Force transfer matrices from stance foot to the user hypothetical joint

\(\boldsymbol{X}_{pelvis}\) :

Positions of the user pelvis in workspace

\({}^{h} \ddot{\boldsymbol{X}}_{pelvis}\) :

Horizontal part of the user pelvis acceleration in workspace

\(Y_{ankle}\) :

Y coordinate of the robot ankle in Cartesian workspace

\(Y_{saddle}\) :

Y coordinate of the robot saddle in Cartesian workspace

\(\varepsilon \) :

A small positive number

\(\theta _{1}\) :

The saddle angle of robot

\(\theta _{2}\) :

The angle between the robot thigh and saddle

\(\theta _{3}\) :

Robot knee angle

\(\theta _{4}\) :

The angle between shank of the robot and the normal to the ground

\(\mu \) :

The set of available bodies

\(\boldsymbol{\tau}_{measure}\) :

Measured robot knee torque

\(\boldsymbol{\tau}_{HL}\), \(\boldsymbol{\tau}_{KL}\), \(\boldsymbol{\tau}_{AL}\) :

Joint torques of the left hip, knee, and ankle in the user model

\(\boldsymbol{\tau}_{HR}\), \(\boldsymbol{\tau}_{KR}\), \(\boldsymbol{\tau}_{AR}\) :

Joint torques of the right hip, knee, and ankle in the user model

\(\boldsymbol{\tau}_{model}\) :

Model joint torques

\(\hat{\boldsymbol{\tau}}_{model}\) :

Model joint torques without floor reaction forces

\(\boldsymbol{\tau}_{T}\) :

Trunk joint torque in the user model

\(\times ^{*}\) :

Spatial force product sign

References

  1. OECD: (2023). Elderly population (indicator). https://doi.org/10.1787/8d805ea1-en (Accessed on 10 March 2023)

  2. Wang, T., et al.: A review on the rehabilitation exoskeletons for the lower limbs of the elderly and the disabled. Electronics 11(3), 388 (2022). https://doi.org/10.3390/electronics11030388

    Article  Google Scholar 

  3. Zhou, J., Yang, S., Xue, Q.: Lower limb rehabilitation exoskeleton robot: a review. Adv. Mech. Eng. 13(4) (2021). https://doi.org/10.1177/16878140211011862

  4. Aoustin, Y., Formalskii, A.M.: Walking of biped with passive exoskeleton: evaluation of energy consumption. Multibody Syst. Dyn. 43(1), 71–96 (2018). https://doi.org/10.1007/s11044-017-9602-7

    Article  MathSciNet  Google Scholar 

  5. Masengo, G., Zhang, X., Dong, R., Alhassan, A.B., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: a review, trends, and challenges for future research. Front. Neurorobot. 16 (2023). https://doi.org/10.3389/fnbot.2022.913748. (In English)

  6. Pratt, J., Krupp, B.: Series elastic actuators for legged robots. In: Proceedings of SPIE – the International Society for Optical Engineering (2004). https://doi.org/10.1117/12.548000

    Chapter  Google Scholar 

  7. Pratt, J., Dilworth, P., Pratt, G.: Virtual model control of a bipedal walking robot. In: Proceedings of International Conference on Robotics and Automation, 25–25 April 1997, vol. 1, pp. 193–198 (1997). https://doi.org/10.1109/ROBOT.1997.620037

    Chapter  Google Scholar 

  8. Sanz-Merodio, D., Cestari, M., Arevalo, J.C., Carrillo, X.A., Garcia, E.: Generation and control of adaptive gaits in lower-limb exoskeletons for motion assistance. Adv. Robot. 28(5), 329–338 (2014). https://doi.org/10.1080/01691864.2013.867284

    Article  Google Scholar 

  9. Esquenazi, A., Talaty, M., Packel, A., Saulino, M.: The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am. J. Phys. Med. Rehabil. 91(11), 911–921 (2012). https://doi.org/10.1097/phm.0b013e318269d9a3

    Article  PubMed  Google Scholar 

  10. Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12(3), 66 (2023)

    Article  Google Scholar 

  11. Kazerooni, H., Steger, R.: The Berkeley lower extremity exoskeleton. J. Dyn. Syst. Meas. Control 128(1), 14–25 (2005). https://doi.org/10.1115/1.2168164

    Article  Google Scholar 

  12. Guizzo, E., Goldstein, H.: The rise of the body bots [robotic exoskeletons]. IEEE Spectr. 42, 50–56 (2005). https://doi.org/10.1109/MSPEC.2005.1515961

    Article  Google Scholar 

  13. Walsh, C., Endo, K., Herr, H.: A quasi-passive leg exoskeleton for load-carrying augmentation. Int. J. Humanoid Robot. 4, 487–506 (2007). https://doi.org/10.1142/S0219843607001126

    Article  Google Scholar 

  14. Sankai, Y.: HAL: hybrid assistive limb based on cybernics. In: Kaneko, M., Nakamura, Y. (eds.) Robotics Research, pp. 25–34. Springer, Berlin (2011)

    Google Scholar 

  15. Qiu, S., Pei, Z., Wang, C., Tang, Z.: Systematic review on wearable lower extremity robotic exoskeletons for assisted locomotion. J. Bionics Eng. 20(2), 436–469 (2023)

    Article  Google Scholar 

  16. Nagarajan, U., Goswami, A.: Improved mobility with a neutral, motion-amplifying controller for an experimental exoskeleton. SAE Int. J. Passeng. Cars Mech. Syst. 8 (2015). https://doi.org/10.4271/2015-01-1400

  17. Gull, M.A., Bai, S., Bak, T.: A review on design of upper limb exoskeletons. Robotics 9(1), 16 (2020). https://doi.org/10.3390/robotics9010016

    Article  Google Scholar 

  18. Glowinski, S., Obst, M., Majdanik, S., Potocka-Banaś, B.: Dynamic model of a humanoid exoskeleton of a lower limb with hydraulic actuators. Sensors 21(10), 3432 (2021). https://doi.org/10.3390/s21103432

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Febrer-Nafría, M., Nasr, A., Ezati, M., Brown, P., Font-Llagunes, J.M., McPhee, J.: Predictive multibody dynamic simulation of human neuromusculoskeletal systems: a review. Multibody Syst. Dyn. 58(3), 299–339 (2023). https://doi.org/10.1007/s11044-022-09852-x

    Article  MathSciNet  Google Scholar 

  20. Mohebbi, A.: Human-robot interaction in rehabilitation and assistance: a review. Curr. Robot. Rep. 1(3), 131–144 (2020). https://doi.org/10.1007/s43154-020-00015-4

    Article  Google Scholar 

  21. Peng, L., Hou, Z.G., Wang, W.: Dynamic modeling and control of a parallel upper-limb rehabilitation robot. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), 11–14 Aug. 2015, pp. 532–537 (2015). https://doi.org/10.1109/ICORR.2015.7281254

    Chapter  Google Scholar 

  22. Sherwani, K.I.K., Kumar, N., Chemori, A., Khan, M., Mohammed, S.: RISE-based adaptive control for EICoSI exoskeleton to assist knee joint mobility. Robot. Auton. Syst. 124, 103354 (2020). https://doi.org/10.1016/j.robot.2019.103354

    Article  Google Scholar 

  23. Zhang, Z., Jiang, J., Peng, L., Fan, H.: A method to control ankle exoskeleton with surface electromyography signals. In: Intelligent Robotics and Applications: Third International Conference, ICIRA 2010, Shanghai, China, November 10-12, 2010, Proceedings, Part II 3, pp. 390–397. Springer, Berlin (2010)

    Chapter  Google Scholar 

  24. Kim, K., Kim, J.-J., Kang, S.-R., Jeong, G.-Y., Kwon, T.-K.: Analysis of the assistance characteristics for the plantarflexion torque in elderly adults wearing the powered ankle exoskeleton. In: ICCAS 2010, pp. 576–579. IEEE, Los Alamitos (2010)

    Chapter  Google Scholar 

  25. Lee, T., Lee, D., Song, B., Baek, Y.S.: Design and control of a polycentric knee exoskeleton using an electro-hydraulic actuator. Sensors 20(1), 211 (2020). https://doi.org/10.3390/s20010211

    Article  ADS  Google Scholar 

  26. Guzmán, C.H., Blanco, A., Brizuela, J.A., Gómez, F.A.: Robust control of a hip–joint rehabilitation robot. Biomed. Signal Process. Control 35, 100–109 (2017). https://doi.org/10.1016/j.bspc.2017.03.002

    Article  Google Scholar 

  27. Pan, C.-T., et al.: Development a multi-loop modulation method on the servo drives for lower limb rehabilitation exoskeleton. Mechatronics 68, 102360 (2020). https://doi.org/10.1016/j.mechatronics.2020.102360

    Article  Google Scholar 

  28. Sherwani, K.I.K., Kumar, N., Chemori, A., Khan, M., Mohammed, S.: RISE-based adaptive control for EICoSI exoskeleton to assist knee joint mobility. Robot. Auton. Syst. 124, 103354 (2020). https://doi.org/10.1016/j.robot.2019.103354

    Article  Google Scholar 

  29. McCain, E.M., et al.: Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control. J. NeuroEng. Rehabil. 16(1), 57 (2019). https://doi.org/10.1186/s12984-019-0523-y

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pan, C.-T., et al.: Development a multi-loop modulation method on the servo drives for lower limb rehabilitation exoskeleton. Mechatronics 68, 102360 (2020). https://doi.org/10.1016/j.mechatronics.2020.102360

    Article  Google Scholar 

  31. Khosravi, M.A., Taghirad, H.D.: Robust PID control of fully-constrained cable driven parallel robots. Mechatronics 24(2), 87–97 (2014). https://doi.org/10.1016/j.mechatronics.2013.12.001

    Article  Google Scholar 

  32. Mouzo, F., Lugris, U., Pamies-Vila, R., Cuadrado, J.: Skeletal-level control-based forward dynamic analysis of acquired healthy and assisted gait motion. Multibody Syst. Dyn. 44(1), 1–29 (2018). https://doi.org/10.1007/s11044-018-09634-4

    Article  MathSciNet  Google Scholar 

  33. Shi, D., Zhang, W., Zhang, W., Ju, L., Ding, X.: Human-centred adaptive control of lower limb rehabilitation robot based on human–robot interaction dynamic model. Mech. Mach. Theory 162, 104340 (2021). https://doi.org/10.1016/j.mechmachtheory.2021.104340

    Article  Google Scholar 

  34. Febrer-Nafría, M., Pallarès-López, R., Fregly, B.J., Font-Llagunes, J.M.: Prediction of three-dimensional crutch walking patterns using a torque-driven model. Multibody Syst. Dyn. 51(1), 1–19 (2021). https://doi.org/10.1007/s11044-020-09751-z

    Article  Google Scholar 

  35. Sugihara, T., Morisawa, M.: A survey: dynamics of humanoid robots. Adv. Robot. 34(21–22), 1338–1352 (2020). https://doi.org/10.1080/01691864.2020.1778524

    Article  Google Scholar 

  36. Delgado, P., Gonzalez, N., Yihun, Y.: Integration of EMG-based learning and sliding mode control for an exoskeleton assist-as-needed support system. In: Proceedings of the ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Vol. 7. 46th Mechanisms and Robotics Conference (MR), pp. 14–17. St. Louis, Missouri (2022). V007T07A034. ASME. https://doi.org/10.1115/DETC2022-91305

    Google Scholar 

  37. Nasr, A., Bell, S., McPhee, J.: Optimal design of active-passive shoulder exoskeletons: a computational modeling of human-robot interaction. Multibody Syst. Dyn. 57(1), 73–106 (2023). https://doi.org/10.1007/s11044-022-09855-8

    Article  MathSciNet  Google Scholar 

  38. Delgado, P., Yihun, Y.S., Vangsness, L., He, H.: Integration of instance-based learning and computed torque control for an effective assist-as-needed support in human-exoskeleton interaction. J. Manag. Eng. Integr. 15(2), 17–25 (2022)

    Google Scholar 

  39. Nabipour, M., Moosavian, S.A.A.: Human model in the loop design optimization for RoboWalk wearable device. J. Mech. Sci. Technol. 35(10), 4685–4693 (2021). https://doi.org/10.1007/s12206-021-0935-z

    Article  Google Scholar 

  40. Al-Shuka, H.F.N., Corves, B., Zhu, W.-H.: Dynamics of biped robots during a complete gait cycle: Euler-Lagrange vs. Newton-Euler formulations. Research Report, School of Control Science and Engineering, Shandong University (2019). hal-01926090

  41. Kvrgic, V., Vidakovic, J.: Efficient method for robot forward dynamics computation. Mech. Mach. Theory 145, 103680 (2020). https://doi.org/10.1016/j.mechmachtheory.2019.103680

    Article  Google Scholar 

  42. Mohamadi, M.R., Akbari, V., Mahdizadeh, O., Nabipour, M., Moosavian, S.A.A.: Simulation analysis of human-RoboWalk augmented model. In: Proceeding of 7th International Conference on Robotics and Mechatronics (ICRoM), 20-21 Nov. 2019, pp. 93–98 (2019). https://doi.org/10.1109/ICRoM48714.2019.9071874

    Chapter  Google Scholar 

  43. Mahdizadeh, O., Akbari, V., Ali, S., Moosavian, A.: RoboWalk multiple-sensor and multipolar data fusion. In: Proceeding of 7th International Conference on Robotics and Mechatronics (ICRoM), 20-21 Nov. 2019, pp. 492–496 (2019). https://doi.org/10.1109/ICRoM48714.2019.9071834

    Chapter  Google Scholar 

  44. Naeemi, S., Mahdizadeh, O., Ali, S., Moosavian, A.: Mechanism improvement of RoboWalk rehabilitation device to adjust the assistive force direction. In: Proceedings of the 11th RSI International Conference on Robotics and Mechatronics, Tehran, Iran (2023)

    Google Scholar 

  45. Selig, J.M.: Geometric Fundamentals of Robotics. Springer, Berlin (2004)

    Google Scholar 

  46. Siciliano, B., Khatib, O. (eds.): Handbook of Robotics Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-32552-1

    Book  Google Scholar 

  47. Moosavian, S.A.A., Nabipour, M., Absalan, F., Akbari, V.: RoboWalk: augmented human-robot mathematical modelling for design optimization. Math. Comput. Model. Dyn. Syst. 27(1), 373–404 (2021). https://doi.org/10.1080/13873954.2021.1879874

    Article  MathSciNet  Google Scholar 

  48. Moosavian, S.A.A., et al.: Test-stand development and performance analysis of RoboWalk assistive device. In: Proceeding of 10th RSI International Conference on Robotics and Mechatronics (ICRoM), 22–24 Nov. 2022, pp. 152–158 (2022). https://doi.org/10.1109/ICRoM57054.2022.10025131

    Chapter  Google Scholar 

  49. Moosavian, S.A.A., Nabipour, M., Akbari, V., Mahdizadeh, O., Beydokhti, A.T., Kiani, A.: Optimal design of a multipurpose test stand for RoboWalk assistive device. In: Proceeding of 9th RSI International Conference on Robotics and Mechatronics (ICRoM), 17–19 Nov. 2021, pp. 413–418 (2021). https://doi.org/10.1109/ICRoM54204.2021.9663476

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

V.A. and O.M. wrote and organized the manuscript for accuracy and clarity. M.N. provided a non-recursive method. S.M. and M.N. provided guidance and oversight throughout the project and valuable input to enhance quality.

Corresponding author

Correspondence to Vahid Akbari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, V., Mahdizadeh, O., Moosavian, S.A.A. et al. Swift augmented human–robot dynamics modeling for rehabilitation planning analyses. Multibody Syst Dyn (2024). https://doi.org/10.1007/s11044-024-09975-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11044-024-09975-3

Keywords

Navigation