Skip to main content
Log in

Statics analysis based on the reduced multibody system transfer matrix method

  • Research
  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The reduced multibody system transfer matrix method can efficiently solve the generalized accelerations of a system without establishing global dynamics equations with a system inertia matrix, given the generalized coordinates and generalized velocities of the system. The equilibrium position of a multibody system is significant in the dynamics analysis, which is difficult to obtain directly. In this paper, a statics analysis method is proposed based on the reduced multibody system transfer matrix method by applying the notion of direct differentiation. The partial derivatives of generalized accelerations with respect to generalized coordinates called Jacobian matrix can be obtained easily by differentiating the transfer equations in the reduced multibody system transfer matrix method. Let the generalized velocities be zero and solve the system of nonlinear equations with zero generalized accelerations to obtain the static equilibrium position of a multibody system. The formulation and solution procedure of the proposed method are presented. The numerical examples are compared with dynamic relaxation method and the iterative method based on the first kind of Lagrange’s equation, which demonstrates the proposed approach and show computational advantages. The proposed method is straightforward, highly programmable, universal and provides a powerful tool for solving static equilibrium positions of multibody systems while extending the application of the multibody system transfer matrix method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Alexandru, C.: Analytical method for determining the static equilibrium position of the rear axles guiding mechanisms of the motor vehicles. Appl. Mech. Mater. 841, 59–64 (2016). https://doi.org/10.4028/www.scientific.net/AMM.841.59

    Article  Google Scholar 

  2. Bauchau, O.A.: Flexible Multibody Dynamics. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  3. Brandl, H., Johanni, R., Otter, M.: An algorithm for the simulation of multibody systems with kinematic loops (1987)

  4. Chen, F.: ADAMS 2020 Virtual Prototyping Technology from Beginner to Master. Tsinghua University Press (2021)

    Google Scholar 

  5. De Jalón, J.G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, New York (2012)

    Google Scholar 

  6. Del Prete, A., Tonneau, S., Mansard, N.: Fast algorithms to test robust static equilibrium for legged robots (2016)

  7. Kane, T.R., Likins, P.W., Levinson, D.A.: Spacecraft Dynamics. McGraw-Hill, New York (1983)

    Book  Google Scholar 

  8. Lu, Y.: Dynamics of Flexible Multibody Systems. Higher Education Press (1996)

    Google Scholar 

  9. Lu, Y., Chang, Z., Lu, Y., Wang, Y.: Development and kinematics/statics analysis of rigid-flexible-soft hybrid finger mechanism with standard force sensor. Robot. Comput.-Integr. Manuf. 67, 101978 (2021). https://doi.org/10.1016/j.rcim.2020.101978

    Article  Google Scholar 

  10. Nandihal, P.V., Mohan, A., Saha, S.K.: Dynamics of Rigid-Flexible Robots and Multibody Systems. Springer, Singapore (2021)

    MATH  Google Scholar 

  11. Negrut, D., Dyer, A.: Adams/solver primer. MSC. Software documentation, Ann Arbor (2004)

  12. Orozco-Magdaleno, E.C., Cafolla, D., Castillo-Castaneda, E., Carbone, G.: Static balancing of wheeled-legged hexapod robots. Robotics 9(2), 23 (2020). https://doi.org/10.3390/robotics9020023

    Article  Google Scholar 

  13. Pestel, E.C., Leckie, F.A., Kurtz, E.F.: Matrix methods in elastomechanics. J. Appl. Mech. 31(3), 574 (1964)

    Article  Google Scholar 

  14. Rose, G.K.: Computational methods for nonlinear systems analysis with applications in mathematics and engineering. Dissertation, Old Dominion University (2017)

  15. Rose, G.K., Newman, B.A., Nguyen, D.T.: A path following method for identifying static equilibrium in multi-body-dynamic systems. Multibody Syst. Dyn. 45(3), 315–359 (2019). https://doi.org/10.1007/s11044-018-9618-7

    Article  MathSciNet  Google Scholar 

  16. Rui, X., Bestle, D.: Reduced multibody system transfer matrix method using decoupled hinge equations. Int. J. Mech. Syst. Dyn. 1(2), 182–193 (2021). https://doi.org/10.1002/msd2.12026

    Article  Google Scholar 

  17. Rui, X., Wenhai, S., Yunzhong, S.: Transfer matrix of rigid body and its application in multibody system dynamics. J. Astronaut. 4, 82–87 (1993)

    Google Scholar 

  18. Rui, X., He, B., Lu, Y., Lu, W., Wang, G.: Discrete time transfer matrix method for multibody system dynamics. Multibody Syst. Dyn. 14(3), 317–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rui, X., Bestle, D., Zhang, J., Zhou, Q.: A new version of transfer matrix method for multibody systems. Multibody Syst. Dyn. 38(2), 137–156 (2016). https://doi.org/10.1007/s11044-016-9528-5

    Article  MathSciNet  MATH  Google Scholar 

  20. Rui, X., Gu, J., Zhang, J., Zhou, Q., Yang, H.: Visualized simulation and design method of mechanical system dynamics based on transfer matrix method for multibody systems. Adv. Mech. Eng. 9(8), 168781401771472 (2017). https://doi.org/10.1177/1687814017714729

    Article  Google Scholar 

  21. Rui, X., Bestle, D., Wang, G., Zhang, J., Rui, X., He, B.: A new version of the Riccati transfer matrix method for multibody systems consisting of chain and branch bodies. Multibody Syst. Dyn. 49(3), 337–354 (2020). https://doi.org/10.1007/s11044-019-09711-2.

    Article  MathSciNet  MATH  Google Scholar 

  22. Rui, X., Zhang, J., Wang, X., Rong, B., He, B., Jin, Z.: Multibody system transfer matrix method: the past, the present, and the future. Int. J. Mech. Syst. Dyn. 2(1), 3–26 (2022). https://doi.org/10.1002/msd2.12037

    Article  Google Scholar 

  23. Schiehlen, W. (ed.): Multibody Systems Handbook, vol. 6. Springer, Berlin (1990)

    MATH  Google Scholar 

  24. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2020)

    Book  MATH  Google Scholar 

  25. Shen, J., Dong, D.: Calculation for static balance of rigid bars systems with multiple degrees of freedom. J. Shanghai Marit. Univ. 24(02), 146–149 (2003)

    Google Scholar 

  26. Sun, J., Yu, T., Dong, P.: Evaluation of 3D slope stability based on the minimum potential energy principle. Comput. Geotech. 146, 104717 (2022). https://doi.org/10.1016/j.compgeo.2022.104717

    Article  Google Scholar 

  27. Wittenburg, J.: Dynamics of Systems of Rigid Bodies, vol. 33. Teubner, Stuttgart (1977)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support from the Multi-domain System Model Simulation and Collaborative Verification Technology (JCKY2020606B004), the National Natural Science Foundation of China (Grant No. 11902158), and the Natural Science Foundation of Jiangsu Province (No. BK20190438).

Author information

Authors and Affiliations

Authors

Contributions

Xizhe Zhang, Xiaoting Rui and Jianshu Zhang conceived of the presented idea. Xizhe Zhang and Jianshu Zhang developed the theory. Xizhe Zhang performed the computations and wrote the main manuscript text. Jianshu Zhang and Junjie Gu provided funding support. Xizhe Zhang and Lina Zhang verified the analytical methods. Jianshu Zhang contributed to the improvement of the manuscript. All authors discussed the results and reviewed the manuscript.

Corresponding author

Correspondence to Xiaoting Rui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix:  Rigid body mechanics

Appendix:  Rigid body mechanics

Herein, the kinematics and dynamics equations of a rigid body are discussed. First consider the point \(P\), which has no relative motion to the rigid body’s body-fixed coordinate system, as shown in Fig. 1. The position vector of the point \(P\) can be expressed as

$$ {{{\overset{\scriptscriptstyle \rightharpoonup}{r}}_{OP}}={{ \overset{\scriptscriptstyle \rightharpoonup}{r}}_{OR}}+{{ \overset{\scriptscriptstyle \rightharpoonup}{r}}_{RP}}}. $$
(52)

The time derivative of Eq. (52) is the equation for the translational velocity vector at the point \(P\), namely

$$ {{\dot{\overset{\scriptscriptstyle \rightharpoonup}{r}}_{OP}}={ \dot{\overset{\scriptscriptstyle \rightharpoonup}{r}}_{OR}}+{{ \overset{\scriptscriptstyle \rightharpoonup}{\omega }}_{OR}}\times {{ \overset{\scriptscriptstyle \rightharpoonup}{r}}_{RP}}}, $$
(53)

where \(\overset{\scriptscriptstyle \rightharpoonup}{r }\) is the position vector and \(\overset{\scriptscriptstyle \rightharpoonup}{\omega }\) is the angular velocity vector. The overhead dot (solid point) denotes the absolute derivatives with respect to the inertial coordinate system.

Since there is no relative motion between the point \(P\) and the body-fixed coordinate system of the rigid body, the following equation is available:

$$ {{\overset{\scriptscriptstyle \rightharpoonup}{\omega }}_{OP}}={{ \overset{\scriptscriptstyle \rightharpoonup}{\omega }}_{OR}}. $$
(54)

The translational and angular acceleration vector of the point \({P}\) on the rigid body in the global inertial coordinate system could be obtained by taking the derivative of Eqs. (53) and (54) with respect to time, respectively [2, 24]:

$$ {{{\ddot{\overset{\scriptscriptstyle \rightharpoonup}{r}}}_{OP}}={{ \ddot{\overset{\scriptscriptstyle \rightharpoonup}{r}}}_{OR}}+{{ \dot{\overset{\scriptscriptstyle \rightharpoonup}{\omega }}}_{OR}} \times {{\overset{\scriptscriptstyle \rightharpoonup}{r}}_{RP}}+{{ \overset{\scriptscriptstyle \rightharpoonup}{\omega }}_{OR}}\times ({{ \overset{\scriptscriptstyle \rightharpoonup}{\omega }}_{OR}}\times {{ \overset{\scriptscriptstyle \rightharpoonup}{r}}_{RP}})}, $$
(55)
$$ {{{\dot{\overset{\scriptscriptstyle \rightharpoonup}{\omega }}}_{OP}}={{ \dot{\overset{\scriptscriptstyle \rightharpoonup}{\omega }}}_{OR}}}. $$
(56)

The acceleration vector of the center of mass can be obtained by setting the point \(P\) as the center of mass \(C\), namely

$$ {{{\ddot{\overset{\scriptscriptstyle \rightharpoonup}{r}}}_{OC}}={{ \ddot{\overset{\scriptscriptstyle \rightharpoonup}{r}}}_{OR}}+{{ \dot{\overset{\scriptscriptstyle \rightharpoonup}{\omega }}}_{OR}} \times {{\overset{\scriptscriptstyle \rightharpoonup}{r}}_{RC}}+{{ \overset{\scriptscriptstyle \rightharpoonup}{\omega }}_{OR}}\times ({{ \overset{\scriptscriptstyle \rightharpoonup}{\omega }}_{OR}}\times {{ \overset{\scriptscriptstyle \rightharpoonup}{r}}_{RC}})}, $$
(57)
$$ {{{\dot{\overset{\scriptscriptstyle \rightharpoonup}{\omega }}}_{OC}}={{ \dot{\overset{\scriptscriptstyle \rightharpoonup}{\omega }}}_{OR}}}. $$
(58)

The dynamics equations for a rigid body can be obtained from Newton’s law and the angular momentum theorem of a rigid body [27]:

$$ {\left \{ \textstyle\begin{array}{l} m{{{\ddot{\overset{\scriptscriptstyle \rightharpoonup}{r}}}}_{OC}}={{{ \overset{\scriptscriptstyle \rightharpoonup}{F}}}{^{\mathrm{{Ex}}}}}, \\ m{{{\overset{\scriptscriptstyle \rightharpoonup}{r}}}_{RC}}\times {{{ \ddot{\overset{\scriptscriptstyle \rightharpoonup}{r}}}}_{OR}}+{{{ \overset{\scriptscriptstyle \rightharpoonup}{\omega }}}_{OR}}\times ({{{ \overset{\scriptscriptstyle \rightharpoonup}{\overset{\scriptscriptstyle \rightharpoonup}{J}}}}_{R}} \cdot {{{\overset{\scriptscriptstyle \rightharpoonup}{\omega }}}_{OR}})+{{{ \overset{\scriptscriptstyle \rightharpoonup}{\overset{\scriptscriptstyle \rightharpoonup}{J}}}}_{R}} \cdot {{{\dot{\overset{\scriptscriptstyle \rightharpoonup}{\omega }}}}_{OR}}= \overset{\scriptscriptstyle \rightharpoonup}{M}{_{R}^{\mathrm{{Ex}}}} , \end{array}\displaystyle \right .} $$
(59)

where \(m\) is the mass of the rigid body and \({{ \overset{\scriptscriptstyle \rightharpoonup}{\overset{\scriptscriptstyle \rightharpoonup}{J}}}_{R}}\) is the inertia tensor of the spatially moving rigid body with respect to the root marker \(R\). \({{\overset{\scriptscriptstyle \rightharpoonup}{F}}{^{\mathrm{{Ex}}}}}\) is the resultant external force acting on the body, and \(\overset{\scriptscriptstyle \rightharpoonup}{M}{_{R}^{\mathrm{{Ex}}}}\) denotes the resultant external torque with respect to the root marker \(R\). Substituting Eq. (57) into Eq. (59), the dynamics equations are obtained as follows:

$$ {\left \{ \textstyle\begin{array}{l} m({{\ddot{\overset{\scriptscriptstyle \rightharpoonup}{r}}}_{OR}}+{{ \dot{\overset{\scriptscriptstyle \rightharpoonup}{\omega }}}_{OR}} \times {{\overset{\scriptscriptstyle \rightharpoonup}{r}}_{RC}}+{{ \overset{\scriptscriptstyle \rightharpoonup}{\omega }}_{OR}}\times ({{ \overset{\scriptscriptstyle \rightharpoonup}{\omega }}_{OR}}\times {{ \overset{\scriptscriptstyle \rightharpoonup}{r}}_{RC}}))={{{ \overset{\scriptscriptstyle \rightharpoonup}{F}}}{^{\mathrm{{Ex}}}}} , \\ m{{{\overset{\scriptscriptstyle \rightharpoonup}{r}}}_{RC}}\times {{{ \ddot{\overset{\scriptscriptstyle \rightharpoonup}{r}}}}_{OR}}+{{{ \overset{\scriptscriptstyle \rightharpoonup}{\omega }}}_{OR}}\times ({{{ \overset{\scriptscriptstyle \rightharpoonup}{\overset{\scriptscriptstyle \rightharpoonup}{J}}}}_{R}} \cdot {{{\overset{\scriptscriptstyle \rightharpoonup}{\omega }}}_{OR}})+{{{ \overset{\scriptscriptstyle \rightharpoonup}{\overset{\scriptscriptstyle \rightharpoonup}{J}}}}_{R}} \cdot {{{\dot{\overset{\scriptscriptstyle \rightharpoonup}{\omega }}}}_{OR}}= \overset{\scriptscriptstyle \rightharpoonup}{M}{_{R}^{\mathrm{{Ex}}}} . \end{array}\displaystyle \right .} $$
(60)

Then the case when the point \(P\) has relative motion to the body-fixed coordinate system of the rigid body is addressed. Equation (52) still holds. The motion of the point \(P\) relative to the rigid body needs to be considered for the acceleration vector. The translational and angular acceleration vectors of the tip marker \(T\) in the global inertial coordinate system are as shown below [10, 24, 27]:

$$ {{\ddot{\overset{\scriptscriptstyle \rightharpoonup}{r}}}_{OP}}={{ \ddot{\overset{\scriptscriptstyle \rightharpoonup}{r}}}_{OR}}+{{ \dot{\overset{\scriptscriptstyle \rightharpoonup}{\omega }}}_{OR}} \times {{\overset{\scriptscriptstyle \rightharpoonup}{r}}_{RP}}+{{ \overset{\scriptscriptstyle \rightharpoonup}{\omega }}_{OR}}\times ({{ \overset{\scriptscriptstyle \rightharpoonup}{\omega }}_{OR}}\times {{ \overset{\scriptscriptstyle \rightharpoonup}{r}}_{RP}})+{{ \overset{\circ \circ }{\mathop{{\overset{\scriptscriptstyle \rightharpoonup}{r}}}} \,}_{RP}}+2{{\overset{\scriptscriptstyle \rightharpoonup}{\omega }}_{OR}} \times {{ \overset{\circ }{\mathop{{\overset{\scriptscriptstyle \rightharpoonup}{r}}}} \,}_{RP}}, $$
(61)
$$ {{\dot{\overset{\scriptscriptstyle \rightharpoonup}{\omega }}}_{OP}}={{ \dot{\overset{\scriptscriptstyle \rightharpoonup}{\omega }}}_{OR}}+{{ \dot{\overset{\scriptscriptstyle \rightharpoonup}{\omega }}}_{RP}}+ {{ \overset{\scriptscriptstyle \rightharpoonup}{\omega }}_{OR}}\times {{ \overset{\scriptscriptstyle \rightharpoonup}{\omega }}_{RP}}, $$
(62)

where the local derivative with respect to the body-fixed coordinate system \(R{x}_{R}y_{R}z_{R}\) is expressed as a hollow point ∘ to distinguish it from the absolute derivative with respect to the inertial coordinate system expressed as a solid point.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Rui, X., Zhang, J. et al. Statics analysis based on the reduced multibody system transfer matrix method. Multibody Syst Dyn (2023). https://doi.org/10.1007/s11044-023-09916-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11044-023-09916-6

Keywords

Navigation