Skip to main content
Log in

Discrete adjoint variable method for the sensitivity analysis of ALI3-P formulations

  • Research
  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The sensitivity analysis of the dynamics of multibody systems is a topic that has been attracting the attention of several researchers for years, particularly due to its value in optimal control and design problems. Depending on the dynamic formulation and the sensitivity method considered, different sets of sensitivity systems of equations would be reached involving diverse complexity levels. In this work, the analytical sensitivity analysis of the augmented Lagrangian index-3 formulation with velocity and acceleration projections (ALI3-P) is developed using the discrete adjoint variable method, considering a Newmark’s family integrator for the numerical integration of the forward dynamics, adjoint sensitivity and gradient equations, and a penalty formulation for the initial acceleration problem. The accuracy and efficiency of the new sensitivity formulation are tested in a five-bar mechanism benchmark problem and in the multibody model of a real-life four-wheeled vehicle. The method has been implemented in the MBSLIM multibody library as two general sensitivity formulations over the already existing global and topological forward dynamics formulations in natural and joint coordinates respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For simplicity, only holonomic constraints will be considered in this work, although the ALI3-P formulation presented in [11] supports also nonholonomic constraints.

  2. The reader is referred to those works for a more detailed description of the mechanism.

References

  1. Arora, J., Haug, E.: Methods of design sensitivity analysis in structural optimization. AIAA J. 17(9), 970–974 (1979). https://doi.org/10.2514/3.61260

    Article  MathSciNet  Google Scholar 

  2. Bayo, E., Ledesma, R.: Augmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamics. Nonlinear Dyn. 9(1–2), 113–130 (1996). https://doi.org/10.1007/BF01833296

    Article  MathSciNet  Google Scholar 

  3. Bayo, E., García De Jalón, J., Serna, M.A.: A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput. Methods Appl. Mech. Eng. 71(2), 183–195 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bestle, D., Seybold, J.: Sensitivity analysis of constrained multibody systems. Arch. Appl. Mech. 62(3), 181–190 (1992). https://doi.org/10.1007/BF00787958

    Article  MATH  Google Scholar 

  5. Brüls, O., Eberhard, P.: Sensitivity analysis for dynamic mechanical systems with finite rotations. Int. J. Numer. Methods Eng. 74(13), 1897–1927 (2008). https://doi.org/10.1002/nme.2232

    Article  MathSciNet  MATH  Google Scholar 

  6. Callejo, A., Dopico, D.: Direct sensitivity analysis of multibody systems: a vehicle dynamics benchmark. J. Comput. Nonlinear Dyn. 14(2), 021004 (2019). https://doi.org/10.1115/1.4041960

    Article  Google Scholar 

  7. Callejo, A., Sonneville, V., Bauchau, O.: Discrete adjoint method for the sensitivity analysis of flexible multibody systems. J. Comput. Nonlinear Dyn. 14(2) (2019). https://doi.org/10.1115/1.4041237

  8. Cuadrado, J., Cardenal, J., Morer, P., Bayo, E.: Intelligent simulation of multibody dynamics: space-state and descriptor methods in sequential and parallel computing environments. Multibody Syst. Dyn. 4(1), 55–73 (2000). https://doi.org/10.1023/A:1009824327480

    Article  MATH  Google Scholar 

  9. Cuadrado, J., Gutiérrez, R., Naya, M., González, M.: Experimental validation of a flexible MBS dynamic formulation through comparison between measured and calculated stresses on a prototype car. Multibody Syst. Dyn. 11(2), 147–166 (2004). https://doi.org/10.1023/B:MUBO.0000025413.13130.2b

    Article  MATH  Google Scholar 

  10. Dopico, D.: Formulaciones semi-recursivas y de penalización para la dinámica en tiempo real de sistemas multicuerpo. Ph.D. thesis, Universidade da Coruña (2004)

  11. Dopico, D., González, F., Cuadrado, J., Kövecses, J.: Determination of holonomic and nonholonomic constraint reactions in an index-3 augmented Lagrangian formulation with velocity and acceleration projections. J. Comput. Nonlinear Dyn. 9(4), 041006 (2014). https://doi.org/10.1115/1.4027671

    Article  Google Scholar 

  12. Dopico, D., Sandu, A., Sandu, C., Zhu, Y.: Sensitivity analysis of multibody dynamic systems modeled by ODEs and DAEs. In: Terze, Z. (ed.) Multibody Dynamics. Computational Methods and Applications. Computational Methods in Applied Sciences, vol. 35, pp. 1–32. Springer, Berlin (2014). https://doi.org/10.1007/978-3-319-07260-9

    Chapter  Google Scholar 

  13. Dopico, D., Zhu, Y., Sandu, A., Sandu, C.: Direct and adjoint sensitivity analysis of ordinary differential equation multibody formulations. J. Comput. Nonlinear Dyn. 10(1), 1–8 (2014). https://doi.org/10.1115/1.4026492

    Article  Google Scholar 

  14. Dopico, D., González, F., Luaces, A., Saura, M., García-Vallejo, D.: Direct sensitivity analysis of multibody systems with holonomic and nonholonomic constraints via an index-3 augmented Lagrangian formulation with projections. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4306-y

    Article  Google Scholar 

  15. Dopico, D., López Varela, Á., Luaces, A.: Augmented Lagrangian index-3 semi-recursive formulations with projections. Multibody Syst. Dyn. (2020). https://doi.org/10.1007/s11044-020-09771-9

    Article  MATH  Google Scholar 

  16. Dopico, D., Sandu, A., Sandu, C.: Adjoint sensitivity index-3 augmented Lagrangian formulation with projections. Mech. Based Des. Struct. Mach. (2021). https://doi.org/10.1080/15397734.2021.1890614

    Article  Google Scholar 

  17. Dopico, D., Luaces, A., Lugrís, U., Saura, M., González, F., Sanjurjo, E., Pastorino, R.: Mbslim: multibody systems in laboratorio de ingeniería mecánica (2009-2016). http://lim.ii.udc.es/MBSLIM

  18. Ebrahimi, M., Butscher, A., Cheong, H., Iorio, F.: Design optimization of dynamic flexible multibody systems using the discrete adjoint variable method. Comput. Struct. 213, 82–99 (2019). https://doi.org/10.1016/j.compstruc.2018.12.007

    Article  Google Scholar 

  19. García de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, New York (1994)

    Book  Google Scholar 

  20. García Orden, J., Dopico, D.: On the stabilizing properties of energy-momentum integrators and coordinate projections for constrained mechanical systems. Comput. Methods Appl. Sci. 4, 49–67 (2007). https://doi.org/10.1007/978-1-4020-5684-0_3

    Article  MathSciNet  MATH  Google Scholar 

  21. Gutiérrez, R.: Cálculo de tensiones en componentes de sistemas móviles mediante dinámica de sistemas multicuerpo flexibles. Ph.D. thesis, Universidade da Coruña (2003)

  22. Gutiérrez-López, M., Callejo, A., García De Jalón, J.: Computation of independent sensitivities using Maggi’s formulation (2012)

  23. Haug, E.: Design sensitivity analysis of dynamic systems. In: Computer Aided Optimal Design: Structural and Mechanical Systems. NATO ASI Series. Series F, Computer and Systems Sciences, vol. 27, pp. 705–755. Springer, Berlin (1987). https://doi.org/10.1007/978-3-642-83051-8_22

    Chapter  Google Scholar 

  24. Haug, E.J., Arora, J.: Applied Optimal Design: Mechanical and Structural Systems (1979)

    Google Scholar 

  25. Lauss, T., Oberpeilsteiner, S., Steiner, W., Nachbagauer, K.: The discrete adjoint gradient computation for optimization problems in multibody dynamics. J. Comput. Nonlinear Dyn. 12(3) (2017). https://doi.org/10.1115/1.4035197

  26. Lauss, T., Oberpeilsteiner, S., Steiner, W., Nachbagauer, K.: The discrete adjoint method for parameter identification in multibody system dynamics. Multibody Syst. Dyn. 42(4), 397–410 (2018). https://doi.org/10.1007/s11044-017-9600-9

    Article  MathSciNet  MATH  Google Scholar 

  27. Lugrís, U.: Real-time methods in flexible multibody dynamics. Ph.D. thesis, Universidade da Coruña (2008)

  28. Maciag, P., Malczyk, P., Fraczek, J.: The discrete Hamiltonian-based adjoint method for some optimization problems in multibody dynamics. Comput. Methods Appl. Sci. 53, 359–366 (2020). Cited by: [1]

    Article  MathSciNet  MATH  Google Scholar 

  29. Maciag, P., Malczyk, P., Fraczek, J.: Hamiltonian direct differentiation and adjoint approaches for multibody system sensitivity analysis. Int. J. Numer. Methods Eng. 121(22), 5082–5100 (2020). https://doi.org/10.1002/nme.6512

    Article  MathSciNet  MATH  Google Scholar 

  30. Mani, N., Haug, E.: Singular value decomposition for dynamic system design sensitivity analysis. Eng. Comput. 1(2), 103–109 (1985). https://doi.org/10.1007/BF01200068

    Article  Google Scholar 

  31. Naya, M.A.: Aplicación de la dinámica multicuerpo en tiempo real a la simulación y el control de automóviles. Ph.D. thesis, Universidade da Coruña (2007)

  32. Pagalday, J.M.: Optimización del comportamiento dinámico de mecanismos. Ph.D. thesis, Universidad de Navarra (1994)

  33. Pagalday, J., Avello, A.: Optimization of multibody dynamics using object oriented programming and a mixed numerical-symbolic penalty formulation. Mech. Mach. Theory 32(2), 161–174 (1997). https://doi.org/10.1016/S0094-114X(96)00037-7

    Article  Google Scholar 

  34. Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  35. Sandu, A.: On the properties of Runge-Kutta discrete adjoints. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) Computational Science ICCS 2006, pp. 550–557. Springer, Berlin (2006)

    Chapter  Google Scholar 

  36. Wang, S., Tian, Q., Hu, H., Shi, J., Zeng, L.: Sensitivity analysis of deployable flexible space structures with a large number of design parameters. Nonlinear Dyn. 105(3), 2055–2079 (2021). https://doi.org/10.1007/s11071-021-06741-4

    Article  Google Scholar 

  37. Zhu, Y., Dopico, D., Sandu, C., Sandu, A.: Dynamic response optimization of complex multibody systems in a penalty formulation using adjoint sensitivity. J. Comput. Nonlinear Dyn. 10(3), 1–9 (2015). https://doi.org/10.1115/1.4029601

    Article  Google Scholar 

Download references

Acknowledgements

The support of the Spanish Ministry of Economy and Competitiveness (MINECO) under project DPI2016-81005-P and the support of Spanish Ministry of Science and Innovation (MICINN) under project PID2020-120270GB-C21 are greatly acknowledged. Furthermore, the first author would like to emphasize the acknowledgment for the support of MINECO by means of the doctoral research contract BES-2017-080727, co-financed by the European Union through the ESF program.

Author information

Authors and Affiliations

Authors

Contributions

Alvaro Lopez Varela, M.D. (Conceptualization: Equal; Investigation: Lead; Software:Lead; Validation: Lead; Writing – original draft: Lead) Corina Sandu (Supervision: Supporting; Writing – review & editing: Supporting) Adrian Sandu (Supervision: Supporting; Writing – review & editing: Supporting) Daniel Dopico (Conceptualization: Equal; Formal analysis: Lead; Investigation: Equal; Methodology: Lead; Software: Equal; Supervision: Lead; Validation: Supporting; Writing – review & editing: Lead)

Corresponding author

Correspondence to Corina Sandu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López Varela, Á., Sandu, C., Sandu, A. et al. Discrete adjoint variable method for the sensitivity analysis of ALI3-P formulations. Multibody Syst Dyn (2023). https://doi.org/10.1007/s11044-023-09911-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11044-023-09911-x

Keywords

Navigation