Skip to main content
Log in

Adjoint sensitivity analysis of hybrid multibody dynamical systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Sensitivity analysis computes the derivatives of general cost functions that depend on the system solution with respect to parameters or initial conditions. This work develops adjoint sensitivity analysis for hybrid multibody dynamic systems. The adjoint sensitivity is commonly referred to as backward propagation. Hybrid systems are characterized by trajectories that are piecewise continuous in time, with finitely-many discontinuities being caused by events such as elastic/inelastic impacts or sudden changes in constraints. The corresponding direct and adjoint sensitivity variables are also discontinuous at the time of events. The framework discussed herein uses a jump sensitivity matrix to relate the jump conditions for the direct and adjoint sensitivities before and after the time event and provides analytical jump equations for the adjoint variables. The theoretical framework for sensitivities for hybrid systems is verified on a five-bar mechanism with non-smooth contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Corner, S., Sandu, C., Sandu, A.: Modeling and sensitivity analysis methodology for hybrid dynamical system. Nonlinear Anal. Hybrid Syst. 31, 19–40 (2019). https://doi.org/10.1016/j.nahs.2018.07.003.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernardo, M., Budd, C., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications, vol. 163. Springer, London (2008)

    MATH  Google Scholar 

  3. Ballard, P.: The dynamics of discrete mechanical systems with perfect unilateral constraints. Arch. Ration. Mech. Anal. 154(3), 199–274 (2000). https://doi.org/10.1007/s002050000105.

    Article  MathSciNet  MATH  Google Scholar 

  4. Pace, A.M., Burden, S.A.: Piecewise-differentiable trajectory outcomes in mechanical systems subject to unilateral constraints. In: HSCC’17, pp. 243–252 (2017). https://doi.org/10.1145/3049797.3049807

    Chapter  Google Scholar 

  5. Zhu, Y., Dopico, D., Sandu, C., Sandu, A.: Dynamic response optimization of complex multibody systems in a penalty formulation using adjoint sensitivity. J. Comput. Nonlinear Dyn. 10(3), 031009 (2015). https://doi.org/10.1115/1.4029601

    Article  Google Scholar 

  6. Pauw, D.J.W.D., Vanrolleghem, P.A.: Avoiding the finite difference sensitivity analysis deathtrap by using the complex-step derivative approximation technique

  7. Sandu, A., Daescu, D.N., Carmichael, G.R.: Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: Part I—Theory and software tools. Atmos. Environ. 37(36), 5083–5096 (2003). https://doi.org/10.1016/j.atmosenv.2003.08.019

    Article  Google Scholar 

  8. Hamann, P., Mehrmann, V.: Numerical solution of hybrid systems of differential-algebraic equations. Comput. Methods Appl. Mech. Eng. 197, 693–705 (2008). https://doi.org/10.1016/j.cma.2007.09.002

    Article  MathSciNet  MATH  Google Scholar 

  9. Mehrmann, V., Wunderlich, L.: Hybrid systems of differential-algebraic equations—analysis and numerical solution. J. Process Control 19, 1218–1228 (2009). https://doi.org/10.1016/j.jprocont.2009.05.002

    Article  Google Scholar 

  10. Cao, Y., Li, S., Petzold, L., Serban, R.: Adjoint sensitivity analysis for differential-algebraic equations: the adjoint DAE system and its numerical solution. SIAM J. Sci. Comput. 24, 1076–1089 (2003). https://doi.org/10.1137/S1064827501380630

    Article  MathSciNet  MATH  Google Scholar 

  11. Petzold, L., Li, S., Cao, Y., Serban, R.: Sensitivity analysis of differential-algebraic equations and partial differential equations. Comput. Chem. Eng. 30, 1553–1559 (2006). https://doi.org/10.1016/j.compchemeng.2006.05.015

    Article  Google Scholar 

  12. Serban, R., Recuero, A.: Sensitivity analysis for hybrid systems and systems with memory. J. Comput. Nonlinear Dyn. 14, 091006 (2019). https://doi.org/10.1115/1.4044028

    Article  Google Scholar 

  13. Barton, P.I., Allgor, R.J., Feehery, W.F., Galán, S.: Dynamic optimization in a discontinuous world. Ind. Eng. Chem. Res. 37(3), 966–981 (1998). https://doi.org/10.1021/ie970738y

    Article  Google Scholar 

  14. Galán, S., Feehery, W.F., Barton, P.I.: Parametric sensitivity functions for hybrid discrete/continuous systems. Appl. Numer. Math. 31(1), 17–47 (1999). https://doi.org/10.1016/S0168-9274(98)00125-1

    Article  MathSciNet  MATH  Google Scholar 

  15. Barton, P.I., Lee, C.K.: Modeling, simulation, sensitivity analysis, and optimization of hybrid systems. ACM Trans. Model. Comput. Simul. 12(4), 256–289 (2002). https://doi.org/10.1145/643120.643122

    Article  MATH  Google Scholar 

  16. Tolsma, J.E., Barton, P.I.: Hidden discontinuities and parametric sensitivity calculations. SIAM J. Sci. Comput. 23(6), 1861–1874 (2002). https://doi.org/10.1137/S106482750037281X

    Article  MathSciNet  MATH  Google Scholar 

  17. Rozenvasser, E.: General sensitivity equations of discontinuous systems. Avtom. Telemeh. 3, 52–56 (1967)

    MATH  Google Scholar 

  18. Saccon, A., van de Wouw, N., Nijmeijer, H.: Sensitivity analysis of hybrid systems with state jumps with application to trajectory tracking. In: 53rd IEEE Conference on Decision and Control, pp. 3065–3070 (2014). https://doi.org/10.1109/CDC.2014.7039861

    Chapter  Google Scholar 

  19. Hiskens, I.A., Alseddiqui, J.: Sensitivity, approximation, and uncertainty in power system dynamic simulation. IEEE Trans. Power Syst. 21(4), 1808–1820 (2006). https://doi.org/10.1109/TPWRS.2006.882460

    Article  Google Scholar 

  20. Hiskens, I.A., Pai, M.A.: Trajectory sensitivity analysis of hybrid systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 47(2), 204–220 (2000). https://doi.org/10.1109/81.828574

    Article  Google Scholar 

  21. Taringoo, F., Caines, P.: On the geometry of switching manifolds for autonomous hybrid systems. IFAC Proc. Vol. 43(12), 35–40 (2010). https://doi.org/10.3182/20100830-3-DE-4013.00008

    Article  Google Scholar 

  22. Backer, W.: Jump conditions for sensitivity coefficients. In: Radanović, L. (ed.) Sensitivity Methods in Control Theory (Symp. Dubrovnik 1964), pp. 168–175 (1964)

    Google Scholar 

  23. Stewart, D.E., Anitescu, M.: Optimal control of systems with discontinuous differential equations. Numer. Math. 114(4), 653–695 (2010). https://doi.org/10.1007/s00211-009-0262-2

    Article  MathSciNet  MATH  Google Scholar 

  24. Taringoo, F., Caines, P.E.: The sensitivity of hybrid systems optimal cost functions with respect to switching manifold parameters. In: Majumdar, R., Tabuada, P. (eds.) Hybrid Systems: Computation and Control, pp. 475–479. Springer, Berlin (2009)

    Chapter  Google Scholar 

  25. Zhang, H., Abhyankar, S., Constantinescu, E., Anitescu, M.: Discrete adjoint sensitivity analysis of hybrid dynamical systems with switching. IEEE Trans. Circuits Syst. I, Regul. Pap. 64, 13 (2017). https://doi.org/10.1109/TCSI.2017.2651683

    Article  Google Scholar 

  26. Biegler, L., Campbell, S., Mehrmann, V.: DAEs, control, and optimization. In: Control and Optimization with Differential-Algebraic Constraints, pp. 1–16 (2012). https://doi.org/10.1137/9781611972252.ch1

    Chapter  MATH  Google Scholar 

  27. Corner, S.: Modeling, sensitivity analysis, and optimization of hybrid, constrained mechanical systems. Ph.D. thesis, Virginia Polytechnic Institute and State University (2018)

  28. Bajo, E., de Jalón, J.G., Serna, M.A.: A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput. Methods Appl. Mech. Eng. 71, 183–195 (1988). https://doi.org/10.1016/0045-7825(88)90085-0

    Article  MathSciNet  MATH  Google Scholar 

  29. Dopico, D., Sandu, A., Sandu, C., Zhu, Y.: Sensitivity analysis of multibody dynamic systems modeled by ODEs and DAEs. In: Terze, Z. (ed.) Multibody Dynamics. Computational Methods in Applied Sciences, vol. 35 (2014). https://doi.org/10.1007/978-3-319-07260-9_1

    Chapter  Google Scholar 

  30. Zhu, Y.: Sensitivity analysis and optimization of multibody systems. Ph.D. thesis, Virginia Tech (2014)

  31. Dopico, D., Sandu, A., Zhu, Y., Sandu, C.: Direct and adjoint sensitivity analysis of ordinary differential equation multibody formulations. J. Comput. Nonlinear Dyn. 10(1), 011012 (2014). https://doi.org/10.1115/1.4026492

    Article  Google Scholar 

  32. Zhu, Y., Dopico, D., Sandu, A., Sandu, C.: Mbsvt. A library for the simulation and optimization of multibody systems [online] (2014) [cited January 2015]

  33. Zhu, Y., Dopico, D., Sandu, C., Sandu, A.: Dynamic response optimization of complex multibody systems in a penalty formulation using adjoint sensitivity. ASME J. Comput. Nonlinear Dyn., Special Issue on Multibody Dynamics for Vehicle Systems 10(3), 031009 (2015). https://doi.org/10.1115/1.4029601. Paper no. CND-14-1268, May 1, 2015

    Article  Google Scholar 

  34. Kolathaya, S., Ames, A.D.: Parameter to state stability of control Lyapunov functions for hybrid system models of robots. Nonlinear Anal. Hybrid Syst. (2016). https://doi.org/10.1016/j.nahs.2016.09.003

    Article  MATH  Google Scholar 

  35. Schaffer, A.S.: On the adjoint formulation of design sensitivity analysis of multibody dynamics. Ph.D. thesis, The University of Iowa (2005)

Download references

Acknowledgements

This project has been partially funded by the European Union Horizon 2020 Framework Program, Marie Skłodowska Curie actions, under grant agreement no. 645736, Project EVE, Innovative Engineering of Ground Vehicles with integrated Active Chassis Systems. It was also supported in part by awards NSF DMS–1419003, NSF CCF–1613905, NSF ACI–1709727, AFOSR DDDAS 15RT1037, by the Computational Science Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corina Sandu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Calculation of partial derivatives used in sensitivity analyses

Remark 5

The expressions \({{f}_{q}^{\text{eom}}}\), \({{f}_{v}^{\text{eom}}}\), and \({{f}_{{\rho }_{i}} ^{\text{eom}}}\) denote the partial derivatives of \({{f}^{\text{eom}}}\) with respect to the subscripted variables. The partial derivatives \(\partial {{f}^{\text{eom}}}/\partial \zeta \) are obtained by differentiating \({{f}^{\text{eom}}}\) with respect to \(\zeta \in \{{q},{v},{\rho }\}\):

$$ \frac{\partial {{f}^{\text{eom}}}}{\partial \zeta } =\frac{\partial (\mathsf{M}^{-1} \mathsf{F})}{\partial \zeta } = - \mathsf{M}^{-1} \mathsf{M}_{\zeta } \mathsf{M}^{-1} \mathsf{F}+ \mathsf{M}^{-1} \mathsf{F}_{\zeta }= \mathsf{M}^{-1} \bigl( \mathsf{F}_{\zeta }- \mathsf{M}_{\zeta } {{f}^{\text{eom}}} \bigr) = \mathsf{M}^{-1} ( \mathsf{F}_{\zeta }- \mathsf{M}_{\zeta } {\dot{{v}}} ). $$
(65)

Remark 6

The expressions \(\tilde{{g}}_{q}\), \(\tilde{{g}}_{v}\), and \(\tilde{{g}}_{{\rho }_{i}}\) denote the partial derivatives of \(\tilde{{g}}\) with respect to the subscripted variables. The partial derivatives \(\partial \tilde{{g}}/\partial \zeta \) are obtained by differentiating (1) with respect to \(\zeta \in \{{q},{v},{\rho }\}\):

$$\begin{aligned} \tilde{{g}}_{\zeta } &= g_{\zeta } + g_{\dot{{v}}} {{f}_{\zeta } ^{\text{eom}}}+ g_{\tilde{u}} \tilde{u}_{\zeta } \\ &= g_{\zeta } + g_{\dot{{v}}} {{f}_{\zeta }^{\text{eom}}}+ g_{{u}} {u}_{\zeta } + g_{{u}} u_{\dot{{v}}} {{f}_{\zeta }^{\text{eom}}}, \end{aligned}$$
(66)

which leads to

$$\begin{aligned}{} [ \tilde{{g}}_{q} {Q}_{i} + \tilde{{g}}_{v} {V}_{i} + \tilde{{g}}_{\rho _{i}} ]_{i=1,\dots ,p} ={}& \bigl[ \bigl(g_{q}+ g_{\dot{{v}}} {{f}_{q}^{\text{eom}}}+ g_{{u}} {u}_{{q}} + g_{{u}} u_{\dot{{v}}} {{f}_{q}^{\text{eom}}} \bigr)\cdot {Q}_{i} \\ & {} + \bigl(g_{v}+ g_{\dot{{v}}} {{f}_{v}^{\text{eom}}}+ g_{{u}} {u}_{{v}} + g_{{u}} u _{\dot{{v}}} {{f}_{v}^{\text{eom}}} \bigr)\cdot {V}_{i} \\ & {} + g_{{\rho }_{i}} + g_{\dot{{v}}}\cdot {{f}_{{\rho }_{i}} ^{\text{eom}}}+ g_{{u}} {u}_{{\rho }} + g_{{u}} u_{\dot{{v}}} {{f}_{{\rho }_{i}}^{\text{eom}}} \bigr]_{i=1,\dots ,p}. \end{aligned}$$
(67)

Remark 7

Similarly, the expressions \(\tilde{w}_{q}\), \(\tilde{w}_{v}\), and \(\tilde{w}_{{\rho }_{i}}\) denote the partial derivatives of \(\tilde{w}\) with respect to the subscripted variables. The partial derivatives \(\partial \tilde{w}/\partial \zeta \) are obtained by differentiating \(w\) with respect to \(\zeta \in \{{q},{v},{\rho }\}\):

$$\begin{aligned} \tilde{w}_{\zeta } &= w_{\zeta } + w_{\dot{{v}}} {{f}_{\zeta }^{\text{eom}}}+ w_{\tilde{u}} \tilde{u}_{\zeta } \\ &= w_{\zeta } + w_{\dot{{v}}} {{f}_{\zeta }^{\text{eom}}}+ w_{{u}} {u}_{\zeta } + w_{{u}} w_{\dot{{v}}} {{f}_{\zeta }^{\text{eom}}}. \end{aligned}$$
(68)

Appendix B: Adjoint of the algebraic Lagrangian coefficient

Methods to compute the adjoint of an index-1 DAE available in the literature [3, 29, 35] use the following approach. Define the Lagrangian using the multipliers \(\mu ^{Q} , \mu ^{V} , \mu ^{\Gamma }\) that correspond to the constraints posed by the index-1 DAE equations (33) as

$$ \begin{bmatrix} \mu ^{Q} \\ \mu ^{V} \\ \mu ^{\Gamma } \end{bmatrix} ^{T} \cdot \left ( \begin{bmatrix} \mathsf{I}& \mathsf{0}& \mathsf{0} \\ \mathsf{0}& {\mathsf{M}} (t,{q},{\rho } ) & {{\Phi }}_{{q}}^{\mathrm{T}} (t,{q},{\rho } ) \\ \mathsf{0}& {{\Phi }}_{{q}} (t,{q},{\rho } ) & \mathsf{0} \end{bmatrix} \cdot \begin{bmatrix} {\dot{{q}}} \\ {\dot{{v}}} \\ \mu \end{bmatrix} - \begin{bmatrix} {v} \\ {\mathsf{F}} (t,{q},{v},{\rho } ) \\ \mathsf{C} (t,{q},{v},{\rho } ) \end{bmatrix} \right ). $$
(69)

We rearrange Eq. (69) as follows:

$$\begin{aligned} &\left ( \begin{bmatrix} \mu ^{Q} \\ \mu ^{V} \\ \mu ^{\Gamma } \end{bmatrix} \cdot \begin{bmatrix} \mathsf{I}& \mathsf{0}& \mathsf{0} \\ \mathsf{0}& {\mathsf{M}} (t,{q},{\rho } ) & {{\Phi }}_{{q}}^{\mathrm{T}} (t,{q},{\rho } ) \\ \mathsf{0}& {{\Phi }}_{{q}} (t,{q},{\rho } ) & \mathsf{0} \end{bmatrix} \right ) \\&\quad \quad {}\cdot \left ( \begin{bmatrix} {\dot{{q}}} \\ {\dot{{v}}} \\ \mu \end{bmatrix} - \begin{bmatrix} \mathsf{I}& \mathsf{0}& \mathsf{0} \\ \mathsf{0}& {\mathsf{M}} (t,{q},{\rho } ) & {{\Phi }}_{{q}}^{\mathrm{T}} (t,{q},{\rho } ) \\ \mathsf{0}& {{\Phi }}_{{q}} (t,{q},{\rho } ) & \mathsf{0} \end{bmatrix} ^{-1} \cdot \begin{bmatrix} {v} \\ {\mathsf{F}} (t,{q},{v},{\rho } ) \\ \mathsf{C} (t,{q},{v},{\rho } ) \end{bmatrix} \right ) \end{aligned}$$
(70)
$$\begin{aligned} &\quad =\left ( \begin{bmatrix} \mu ^{Q} \\ \mu ^{V} \\ \mu ^{\Gamma } \end{bmatrix} ^{T} \cdot \begin{bmatrix} \mathsf{I}& \mathsf{0}& \mathsf{0} \\ \mathsf{0}& {\mathsf{M}} (t,{q},{\rho } ) & {{\Phi }}_{{q}}^{\mathrm{T}} (t,{q},{\rho } ) \\ \mathsf{0}& {{\Phi }}_{{q}} (t,{q},{\rho } ) & \mathsf{0} \end{bmatrix} \right ) \cdot \left ( \begin{bmatrix} {\dot{{q}}} \\ {\dot{{v}}} \\ \mu \end{bmatrix} - \begin{bmatrix} V \\ {{f}^{\text{DAE-}\dot{v}}} \\ {{f}^{\text{DAE-}\mu}} \end{bmatrix} \right ) \end{aligned}$$
(71)
$$\begin{aligned} &\quad = \begin{bmatrix} \lambda ^{Q} \\ \lambda ^{V} \\ \lambda ^{\Gamma } \end{bmatrix} ^{T} \cdot \left ( \begin{bmatrix} {\dot{{q}}} \\ {\dot{{v}}} \\ \mu \end{bmatrix} - \begin{bmatrix} V \\ {{f}^{\text{DAE-}\dot{v}}} \\ {{f}^{\text{DAE-}\mu}} \end{bmatrix} \right ). \end{aligned}$$
(72)

The adjoint variables \(\lambda ^{Q} , \lambda ^{V} , \lambda ^{\Gamma }\) defined in this paper, and the adjoint variables \(\mu ^{Q} , \mu ^{V} , \mu ^{\Gamma }\) used in the literature (69), are related by the following matrix multiplication:

$$ \begin{bmatrix} \lambda ^{Q} \\ \lambda ^{V} \\ \lambda ^{\Gamma } \end{bmatrix} = \begin{bmatrix} \mathsf{I}& \mathsf{0}& \mathsf{0} \\ \mathsf{0}& {\mathsf{M}} (t,{q},{\rho } ) & {{\Phi }}_{{q}}^{\mathrm{T}} (t,{q},{\rho } ) \\ \mathsf{0}& {{\Phi }}_{{q}} (t,{q},{\rho } ) & \mathsf{0} \end{bmatrix} \cdot \begin{bmatrix} \mu ^{Q} \\ \mu ^{V} \\ \mu ^{\Gamma } \end{bmatrix} . $$

The adjoint DAE equations and boundary conditions in the “\(\mu \) formulation” [3, 29, 35] can be derived from the equations and boundary conditions in the “\(\lambda \) formulation” discussed in this paper, and vice-versa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corner, S., Sandu, A. & Sandu, C. Adjoint sensitivity analysis of hybrid multibody dynamical systems. Multibody Syst Dyn 49, 395–420 (2020). https://doi.org/10.1007/s11044-020-09726-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09726-0

Keywords

Navigation