Skip to main content
Log in

Integration of prioritized impedance controller in improved hierarchical operational-space torque control frameworks for legged locomotion robots

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes to integrate our prioritized impedance controller (PIC) into four kinds of improved hierarchical operational-space torque-control frameworks: one pseudo-inverse-based dynamics method and three optimization-based techniques, including one null-space-based weighted optimization solver, one hierarchical optimization solver, and one hybrid hierarchical-weighted solver. The integrated PIC enables various impedance control forces to be consistent and compatible with multi-task hierarchies. The concept PIC can handle more general impedance controllers, including those built directly on specifically designed tasks and those indirectly acting on the whole-body behaviors. In the pseudo-inverse-based dynamics method and the null-space-based weighted scheme, each task acceleration with the prioritized impedance controller is extracted using one proposed modified dynamics model embodying PIC, which especially enables the integration of this new prioritized weighted scheme in the strict hierarchical control framework. For the hierarchical optimization solver, another modified dynamics model is proposed to integrate PIC and embody the multi-level control hierarchy. The second modified dynamics model makes it possible to achieve a more general and complete hierarchical optimization solver for both the task acceleration extraction and the same number of constraints for each hierarchy, expressed depending on the actuated torque. Then we use our second modified model for a more complex scenario, combining the hierarchical and the null-space-based weighted frameworks together. The two dynamics models are only developed for the derivation of the relative torque controllers, and the detailed algorithm is developed which is more general and compact for the three optimization solvers. Any of the approaches can be selected depending on the actual user-defined applications. Our methods are tested and compared in several simulation scenarios using a virtual quadruped-on-wheel robot, TowrISIR with a manipulator on its floating base.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bellicoso, C.D., Gehring, C., Hwangbo, J., Fankhauser, P., Hutter, M.: Perception-less terrain adaptation through whole body control and hierarchical optimization. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pp. 558–564. IEEE Press, New York (2016)

    Chapter  Google Scholar 

  2. Boaventura, T., Semini, C., Buchli, J., Frigerio, M., Focchi, M., Caldwell, D.G.: Dynamic torque control of a hydraulic quadruped robot. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 1889–1894. IEEE Press, New York (2012)

    Chapter  Google Scholar 

  3. Boaventura, T., Medrano-Cerda, G.A., Semini, C., Buchli, J., Caldwell, D.G.: Stability and performance of the compliance controller of the quadruped robot hyq. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1458–1464. IEEE Press, New York (2013)

    Chapter  Google Scholar 

  4. Boaventura, T., Buchli, J., Semini, C., Caldwell, D.G.: Model-based hydraulic impedance control for dynamic robots. IEEE Trans. Robot. 31(6), 1324–1336 (2015)

    Article  Google Scholar 

  5. Bouyarmane, K., Kheddar, A.: Using a multi-objective controller to synthesize simulated humanoid robot motion with changing contact configurations. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4414–4419. IEEE Press, New York (2011)

    Chapter  Google Scholar 

  6. Buchli, J., Kalakrishnan, M., Mistry, M., Pastor, P., Schaal, S.: Compliant quadruped locomotion over rough terrain. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 814–820. IEEE Press, New York (2009)

    Google Scholar 

  7. Dai, H., Valenzuela, A., Tedrake, R.: Whole-body motion planning with centroidal dynamics and full kinematics. In: 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 295–302. IEEE Press, New York (2014)

    Chapter  Google Scholar 

  8. De Lasa, M., Mordatch, I., Hertzmann, A.: Feature-based locomotion controllers. ACM Trans. Graph. 29(4), 1–10 (2010)

    Article  Google Scholar 

  9. Deits, R., Tedrake, R.: Footstep planning on uneven terrain with mixed-integer convex optimization. In: 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 279–286. IEEE Press, New York (2014)

    Chapter  Google Scholar 

  10. Dietrich, A., Wimbock, T., Albu-Schaffer, A., Hirzinger, G.: Reactive whole-body control: dynamic mobile manipulation using a large number of actuated degrees of freedom. IEEE Robot. Autom. Mag. 19(2), 20–33 (2012)

    Article  Google Scholar 

  11. Du, W., Benamar, F.: A compact form dynamics controller for a high-dof tetrapod-on-wheel robot with one manipulator via null space based convex optimization and compatible impedance controllers. Multibody Syst. Dyn. 49(4), 447–463 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Du, W., Fnadi, M., Benamar, F.: Rolling based locomotion on rough terrain for a wheeled quadruped using centroidal dynamics. Mech. Mach. Theory 153, 103984 (2020)

    Article  Google Scholar 

  13. Du, W., Fnadi, M., Benamar, F.: Whole-body motion tracking for a quadruped-on-wheel robot via a compact-form controller with improved prioritized optimization. IEEE Robot. Autom. Lett. 5(2), 516–523 (2020)

    Article  Google Scholar 

  14. Du, W., Fnadi, M., Benamar, F.: A new whole-body motion generator and adaptive altitude control for a quadruped-on-wheel robot. J. Mech. Robot. (2022) (under review)

  15. Du, W., Fnadi, M., Moullet, E., Benamar, F.: Leg centroidal dynamics based new locomotion principle of a quadruped robot with on-line legged motion generation. J. Intell. Robot. Syst. 103(4), 1–34 (2021)

    Article  Google Scholar 

  16. Englsberger, J., Werner, A., Ott, C., Henze, B., Roa, M.A., Garofalo, G., Burger, R., Beyer, A., Eiberger, O., Schmid, K., et al.: Overview of the torque-controlled humanoid robot toro. In: 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 916–923. IEEE Press, New York (2014)

    Chapter  Google Scholar 

  17. Escande, A., Mansard, N., Wieber, P.B.: Hierarchical quadratic programming: fast online humanoid-robot motion generation. Int. J. Robot. Res. 33(7), 1006–1028 (2014)

    Article  Google Scholar 

  18. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, Berlin (2014)

    MATH  Google Scholar 

  19. Feng, S.: Online hierarchical optimization for humanoid control (2016)

  20. Fernández, G., et al.: Predictive context-based adaptive compliance for interaction control of robot manipulators. PhD thesis, Bremen, Univ., Diss., 2011 (2010)

  21. Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: Qpoases: a parametric active-set algorithm for quadratic programming. Math. Program. Comput. 6(4), 327–363 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Focchi, M., Del Prete, A., Havoutis, I., Featherstone, R., Caldwell, D.G., Semini, C.: High-slope terrain locomotion for torque-controlled quadruped robots. Auton. Robots 41(1), 259–272 (2017)

    Article  Google Scholar 

  23. Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S., Righetti, L.: Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid. Auton. Robots 40(3), 473–491 (2016)

    Article  Google Scholar 

  24. Hogan, N.: Impedance control: an approach to manipulation. In: American Control Conference, 1984, pp. 304–313. IEEE Press, New York (1984)

    Google Scholar 

  25. Hopkins, M.A., Hong, D.W., Leonessa, A.: Compliant locomotion using whole-body control and divergent component of motion tracking. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5726–5733. IEEE Press, New York (2015)

    Chapter  Google Scholar 

  26. Hoyt, D.F., Taylor, C.R.: Gait and the energetics of locomotion in horses. Nature 292(5820), 239–240 (1981)

    Article  Google Scholar 

  27. Hutter, M., Gehring, C., Bloesch, M., Hoepflinger, M.A., Remy, C.D., Siegwart, R.: Starleth: a compliant quadrupedal robot for fast, efficient, and versatile locomotion. In: Adaptive Mobile Robotics, 483–490 (2012)

    Chapter  Google Scholar 

  28. Hutter, M., Sommer, H., Gehring, C., Hoepflinger, M., Bloesch, M., Siegwart, R.: Quadrupedal locomotion using hierarchical operational space control. Int. J. Robot. Res. 33(8), 1047–1062 (2014)

    Article  Google Scholar 

  29. Hutter, M., Gehring, C., Jud, D., Lauber, A., Bellicoso, C.D., Tsounis, V., Hwangbo, J., Bodie, K., Fankhauser, P., Bloesch, M., et al.: Anymal-a highly mobile and dynamic quadrupedal robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 38–44. IEEE Press, New York (2016)

    Chapter  Google Scholar 

  30. Hyun, D.J., Seok, S., Lee, J., Kim, S.: High speed trot-running: implementation of a hierarchical controller using proprioceptive impedance control on the mit cheetah. Int. J. Robot. Res. 33(11), 1417–1445 (2014)

    Article  Google Scholar 

  31. Kanoun, O., Lamiraux, F., Wieber, P.B.: Kinematic control of redundant manipulators: generalizing the task-priority framework to inequality task. IEEE Trans. Robot. 27(4), 785–792 (2011)

    Article  Google Scholar 

  32. Koolen, T., Bertrand, S., Thomas, G., De Boer, T., Wu, T., Smith, J., Englsberger, J., Pratt, J.: Design of a momentum-based control framework and application to the humanoid robot atlas. Int. J. Humanoid Robot. 13(01), 1650007 (2016)

    Article  Google Scholar 

  33. Kuindersma, S., Permenter, F., Tedrake, R.: An efficiently solvable quadratic program for stabilizing dynamic locomotion. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2589–2594. IEEE Press, New York (2014)

    Chapter  Google Scholar 

  34. Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., Koolen, T., Marion, P., Tedrake, R.: Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Auton. Robots 40(3), 429–455 (2016)

    Article  Google Scholar 

  35. Mastalli, C., Havoutis, I., Focchi, M., Caldwell, D.G., Semini, C.: Hierarchical planning of dynamic movements without scheduled contact sequences. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4636–4641. IEEE Press, New York (2016)

    Chapter  Google Scholar 

  36. Mistry, M., Buchli, J., Schaal, S.: Inverse dynamics control of floating base systems using orthogonal decomposition. In: 2010 IEEE International Conference on Robotics and Automation, pp. 3406–3412. IEEE Press, New York (2010)

    Chapter  Google Scholar 

  37. Ott, C., Mukherjee, R., Nakamura, Y.: Unified impedance and admittance control. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 554–561. IEEE Press, New York (2010)

    Chapter  Google Scholar 

  38. Park, J., Khatib, O.: Contact consistent control framework for humanoid robots. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, 2006 pp. 1963–1969. IEEE Press, New York (2006)

    Google Scholar 

  39. Part, S.: Impedance control: an approach to manipulation. J. Dyn. Syst. Meas. Control 107, 17 (1985)

    Article  Google Scholar 

  40. Ponce, O.E.R.: Generation of the whole-body motion for humanoid robots with the complete dynamics. PhD thesis, Universite Toulouse III Paul Sabatier (2014)

  41. Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.: Optimal distribution of contact forces with inverse-dynamics control. Int. J. Robot. Res. 32(3), 280–298 (2013)

    Article  Google Scholar 

  42. Saab, L., Ramos, O.E., Keith, F., Mansard, N., Soueres, P., Fourquet, J.Y.: Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Trans. Robot. 29(2), 346–362 (2013)

    Article  Google Scholar 

  43. Salini, J., Padois, V., Bidaud, P.: Synthesis of complex humanoid whole-body behavior: a focus on sequencing and tasks transitions. In: 2011 IEEE International Conference on Robotics and Automation, pp. 1283–1290. IEEE Press, New York (2011)

    Chapter  Google Scholar 

  44. Semini, C., Barasuol, V., Goldsmith, J., Frigerio, M., Focchi, M., Gao, Y., Caldwell, D.G.: Design of the hydraulically actuated, torque-controlled quadruped robot hyq2max. IEEE/ASME Trans. Mechatron. 22(2), 635–646 (2017)

    Article  Google Scholar 

  45. Sentis, L., Khatib, O.: Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int. J. Humanoid Robot. 2(04), 505–518 (2005)

    Article  Google Scholar 

  46. Siciliano, B., Khatib, O.: Robotics and the handbook. In: Springer Handbook of Robotics, pp. 1–6. Springer, Berlin (2016)

    Chapter  MATH  Google Scholar 

  47. Wensing, P.M.: Optimization and Control of Dynamic Humanoid Running and Jumping, The Ohio State University (2014)

    Google Scholar 

  48. Wensing, P.M., Orin, D.E.: Generation of dynamic humanoid behaviors through task-space control with conic optimization. In: 2013 IEEE International Conference on Robotics and Automation, pp. 3103–3109. IEEE Press, New York (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqian Du.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(MP4 60.9 MB)

Appendices

Appendix A: Derivation in null-space-based weighted convex optimization

The fundamental theory of the multi-task operational space control is referred in [45], which is used to derive the formulas in Appendix A, B and C. Then, the operational space force of the task \(i\) can be expressed by using the modified dynamics model with PIC in (11), as below,

$$\begin{aligned} \boldsymbol{F}_{i|pre(i)} &=\boldsymbol{\varLambda }_{i|pre(i)}\ddot{\textbf{x}}_{i}+ \boldsymbol{h}_{i|pre(i)} - \boldsymbol{T}_{i|pre(i)} \end{aligned}$$
(40a)
$$\begin{aligned} &=\boldsymbol{\varLambda }_{i|pre(i)}\ddot{\textbf{x}}_{i}+\boldsymbol{h}_{i|pre(i)} - \boldsymbol{\varLambda }_{i|pre(i)}\boldsymbol{J}_{i}\boldsymbol{M}^{-1}\sum _{t=1}^{i-1}\boldsymbol{J}^{ \top }_{t|pre(t)}\boldsymbol{F}_{t|pre(t)} \end{aligned}$$
(40b)
$$\begin{aligned} &=\boldsymbol{\varLambda }_{i|pre(i)}\ddot{\textbf{x}}_{i}+\boldsymbol{h}_{i|pre(i)} - \boldsymbol{\varLambda }_{i|pre(i)}\boldsymbol{J}_{i}\boldsymbol{M}^{-1}\sum _{t=1}^{i-1}\boldsymbol{J}^{ \top }_{t|pre(t)}\bar{\boldsymbol{J}}^{\top }_{t|pre(t)}(\boldsymbol{{S}}^{ \top }\boldsymbol{\tau }- \boldsymbol{\varGamma }) \end{aligned}$$
(40c)
$$\begin{aligned} & = \bar{\boldsymbol{J}}^{\top }_{i|pre(i)}\left ( \boldsymbol{{S}}^{\top } \boldsymbol{\tau }- \boldsymbol{\varGamma } \right ) , \end{aligned}$$
(40d)

where \(\boldsymbol{T}_{i|pre(i)}\) combines the tasks with priorities higher than \(i\). (40a) and (40d) are derived by multiplying \(\bar{\boldsymbol{J}}^{\top }_{i|pre(i)}\) on the left and right sides of the modified dynamics model in (11), respectively. Then the quadratic form of the task \(i\) acceleration extraction in (15a) and (15b) can be achieved using (40a)-(40d) and the following formula,

$$ \ddot{\textbf{x}}_{i} =\boldsymbol{\varLambda }^{-1}_{i|pre(i)}\left [ \boldsymbol{F}_{i|pre(i)} + \boldsymbol{T}_{i|pre(i)} - \boldsymbol{h}_{i|pre(i)}\right ] = \boldsymbol{A}^{\top }_{i} \boldsymbol{\tau } + \boldsymbol{B}_{i}. $$
(41)

Appendix B: Derivation in null-space-based hierarchical convex optimization

The operational space force of the task \(i\) can be expressed by using the second modified dynamics model with PIC in (22), as below,

$$\begin{aligned} \boldsymbol{F}_{i|pre(i)} &=\boldsymbol{\varLambda }_{i|pre(i)}\ddot{\textbf{x}}_{i}+ \boldsymbol{h}_{i|pre(i)} - \boldsymbol{T}_{i|pre(i)} \end{aligned}$$
(42a)
$$\begin{aligned} &=\boldsymbol{\varLambda }_{i|pre(i)}\ddot{\textbf{x}}_{i}+\boldsymbol{h}_{i|pre(i)} - \boldsymbol{\varLambda }_{i|pre(i)}\boldsymbol{J}_{i}\boldsymbol{M}^{-1}\sum _{t=1}^{i-1}\boldsymbol{J}^{ \top }_{t|pre(t)}\boldsymbol{F}_{t|pre(t)} \end{aligned}$$
(42b)
$$\begin{aligned} &= \bar{\boldsymbol{J}}^{\top }_{i|pre(i)}\left ( - \boldsymbol{\varGamma } + \sum _{t=1}^{K} \boldsymbol{N}^{\top }_{pre(t)}\boldsymbol{S}^{\top }\boldsymbol{\tau }_{t} \right ) \end{aligned}$$
(42c)
$$\begin{aligned} &= \bar{\boldsymbol{J}}^{\top }_{i|pre(i)}\left ( \boldsymbol{{S}}^{\top } \boldsymbol{\tau }_{i} - \boldsymbol{\varGamma } + \sum _{t=1}^{i-1}\boldsymbol{S}^{\top }\boldsymbol{\tau }_{t} \right ) , \end{aligned}$$
(42d)

where (42a) and (42c) are derived by multiplying \(\bar{\boldsymbol{J}}^{\top }_{i|pre(i)}\) on the left and right sides of the second modified dynamics model in (22), respectively. Then the quadratic form of the task \(i\) acceleration extraction in (24a), (24b) can be achieved by combining (41) and (42a)-(42d).

Appendix C: Derivation in the null-space-based hybrid hierarchical-weighted convex optimization

The operational space force of task \(i\) can also be expressed by using the second modified dynamics model with PIC in (22), as below,

$$\begin{aligned} \boldsymbol{F}_{i_{j}|pre(i_{j})} =&\boldsymbol{\varLambda }_{i_{j}|pre(i_{j})} \ddot{\textbf{x}}_{i_{j}}+\boldsymbol{h}_{i_{j}|pre(i_{j})} - \boldsymbol{T}_{i_{j}|pre(i_{j})} \end{aligned}$$
(43a)
$$\begin{aligned} =& \bar{\boldsymbol{J}}^{\top }_{i_{j}|pre(i_{j})}\left ( \boldsymbol{{S}}^{ \top }\boldsymbol{\tau }_{i} - \boldsymbol{\varGamma } + \sum _{t=1}^{i-1}\boldsymbol{S}^{\top } \boldsymbol{\tau }_{t}\right ), \end{aligned}$$
(43b)

where (43a) and (43b) are derived by multiplying \(\bar{\boldsymbol{J}}^{\top }_{i_{j}|pre(i_{j})}\) on the left and right sides of the second modified dynamics model in (22), respectively. \(\boldsymbol{T}_{i_{j}|pre(i_{j})}\) combines the tasks with priorities higher than \(i\), and the subtasks from \(i_{1}\) to \(i_{j-1}\), as follows,

$$ \begin{aligned} \boldsymbol{T}_{i_{j}|pre(i_{j})} = & \boldsymbol{\varLambda }_{i_{j}|pre(i_{j})}\boldsymbol{J}_{i_{j}} \boldsymbol{M}^{-1}\left [ \sum _{t=1}^{i-1}\boldsymbol{J}^{\top }_{t|pre(t)}\boldsymbol{F}_{t|pre(t)} +\sum _{p=1}^{j-1}\boldsymbol{J}^{\top }_{i_{p}|pre(i_{p})}\boldsymbol{F}_{i_{p}|pre(i_{p})} \right ] \\ =&\boldsymbol{\varLambda }_{i_{j}|pre(i_{j})}\boldsymbol{J}_{i_{j}}\boldsymbol{M}^{-1}\left [ \sum _{t=1}^{i-1}\boldsymbol{J}^{\top }_{t|pre(t)}\bar{\boldsymbol{J}}^{\top }_{t|pre(t)}(- \boldsymbol{\varGamma } + \sum _{k=1}^{t}\boldsymbol{S}^{\top }\boldsymbol{\tau }_{k})\right ] + \\ &\boldsymbol{\varLambda }_{i_{j}|pre(i_{j})}\boldsymbol{J}_{i_{j}}\boldsymbol{M}^{-1}\left [ \sum _{p=1}^{j-1}\boldsymbol{J}^{\top }_{i_{p}|pre(i_{p})}\bar{\boldsymbol{J}}^{\top }_{i_{p}|pre(i_{p})}( \boldsymbol{{S}}^{\top }\boldsymbol{\tau }_{i} - \boldsymbol{\varGamma } + \sum _{t=1}^{i-1} \boldsymbol{S}^{\top }\boldsymbol{\tau }_{t})\right ] \\ =& \boldsymbol{U}_{i_{j}}\boldsymbol{\tau }_{i} + \boldsymbol{V}_{i_{j}}, \end{aligned} $$
(44)

where \(\boldsymbol{U}_{i_{j}}\) and \(\boldsymbol{V}_{i_{j}}\) can be extracted using the above formula, as below,

$$\begin{aligned} &\boldsymbol{U}_{i_{j}} = \boldsymbol{\varLambda }_{i_{j}|pre(i_{j})}\boldsymbol{J}_{i_{j}}\boldsymbol{M}^{-1} \sum _{p=1}^{j-1}\boldsymbol{J}^{\top }_{i_{p}|pre(i_{p})}\bar{\boldsymbol{J}}^{\top }_{i_{p}|pre(i_{p})} \boldsymbol{S}^{\top }, \end{aligned}$$
(45a)
$$\begin{aligned} &\begin{aligned} \boldsymbol{V}_{i_{j}} =&\boldsymbol{\varLambda }_{i_{j}|pre(i_{j})}\boldsymbol{J}_{i_{j}}\boldsymbol{M}^{-1} \left [ \sum _{t=1}^{i-1}\boldsymbol{J}^{\top }_{t|pre(t)}\bar{\boldsymbol{J}}^{\top }_{t|pre(t)}(- \boldsymbol{\varGamma } + \sum _{k=1}^{t}\boldsymbol{S}^{\top }\boldsymbol{\tau }_{k})\right ] + \\ &\boldsymbol{\varLambda }_{i_{j}|pre(i_{j})}\boldsymbol{J}_{i_{j}}\boldsymbol{M}^{-1}\left [ \sum _{p=1}^{j-1}\boldsymbol{J}^{\top }_{i_{p}|pre(i_{p})}\bar{\boldsymbol{J}}^{\top }_{i_{p}|pre(i_{p})}(- \boldsymbol{\varGamma } + \sum _{t=1}^{i-1}\boldsymbol{S}^{\top }\boldsymbol{\tau }_{t})\right ] , \end{aligned} \end{aligned}$$
(45b)

Then the quadratic form of the task \(i_{j}\) acceleration extraction in (38a) and (38b) can be achieved by using (43a) and (43b) as follows,

$$ \ddot{\textbf{x}}_{i_{j}} =\boldsymbol{\varLambda }^{-1}_{i_{j}|pre(i_{j})}\left [ \boldsymbol{F}_{i_{j}|pre(i_{j})} + \boldsymbol{T}_{i_{j}|pre(i_{j})} - \boldsymbol{h}_{i_{j}|pre(i_{j})} \right ] = \boldsymbol{A}^{\top }_{i_{j}} \boldsymbol{\tau }_{i} + \boldsymbol{B}_{i_{j}}. $$
(46)

Appendix D: Floating-base motion

The base angular velocity can be expressed in the float-base frame as below,

$$\begin{aligned} \boldsymbol{\omega }_{b}&= \underbrace{\begin{bmatrix} 1 & 0 & -\sin (\beta ) \\ 0 & \cos (\alpha ) & \cos (\beta )\sin (\alpha ) \\ 0 & -\sin (\alpha ) & \cos (\alpha )\cos (\beta ) \end{bmatrix}}_{\boldsymbol{\varTheta }}\dot{\boldsymbol{\theta }}_{b}, \end{aligned}$$
(47a)
$$\begin{aligned} \dot{\boldsymbol{\omega }}_{b} &= \dot{\boldsymbol{\varTheta }} \dot{\boldsymbol{\theta }}_{b} + \boldsymbol{\varTheta }\ddot{\boldsymbol{\theta }}_{b}, \end{aligned}$$
(47b)

then \(\dot{\boldsymbol{\theta }}_{b}\) and \(\ddot{\boldsymbol{\theta }}_{b}\) can be achieved using the following relationships,

$$\begin{aligned} \dot{\boldsymbol{\theta }}_{b} &= \boldsymbol{\varTheta }^{-1} \boldsymbol{\omega }_{b}, \end{aligned}$$
(48a)
$$\begin{aligned} \ddot{\boldsymbol{\theta }}_{b} &= \boldsymbol{\varTheta }^{-1} \dot{\boldsymbol{\omega }}_{b} - \boldsymbol{\varTheta }^{-1}\dot{\boldsymbol{\varTheta }} \dot{\boldsymbol{\theta }}_{b}. \end{aligned}$$
(48b)

The above relationships can be referred detailed in [46]. The base translational velocity is derived as follows,

$$\begin{aligned} \dot{\boldsymbol{p}}_{b} &= {}^{0}\boldsymbol{R}_{b}\boldsymbol{v}_{b}, \end{aligned}$$
(49a)
$$\begin{aligned} \ddot{\boldsymbol{p}}_{b}&= {}^{0}\boldsymbol{R}_{b}\left ( \dot{\boldsymbol{v}}_{b}+ \boldsymbol{\omega }_{b}\times \boldsymbol{v}_{b}\right ) , \end{aligned}$$
(49b)

where \({}^{0}\boldsymbol{R}_{b}\) is the rotation matrix from the floating-base frame to the inertial frame. \(\boldsymbol{v}_{b}\) is the base translational velocity expressed in the floating-base frame. The translational relationship can be referred in [18].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Fnadi, M. & Benamar, F. Integration of prioritized impedance controller in improved hierarchical operational-space torque control frameworks for legged locomotion robots. Multibody Syst Dyn 54, 235–262 (2022). https://doi.org/10.1007/s11044-021-09809-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-021-09809-6

Keywords

Navigation