Skip to main content
Log in

A low order, torsion deformable spatial beam element based on the absolute nodal coordinate formulation and Bishop frame

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Heretofore, the Serret–Frenet frame has been the ubiquitous choice for analyzing the elastic deformations of beam elements. It is well-known that this frame is undefined at the inflection points and straight segments of the beam where its curvature is zero, leading to singularities and errors in their numerical analysis. On the other hand, there exists a lesser-known frame called Bishop which does not have the caveats of the Serret–Frenet frame and is well-defined everywhere along the beam center-line. Leveraging the Bishop frame, in this paper, we propose a new spatial, singularity-free low order beam element based on the absolute nodal coordinate formulation for both small and large deformation applications. This element, named ANCF14, has a constant mass matrix and can capture longitudinal, transverse (bending) and torsional deformations. It is a two-noded element with 7 degrees of freedom per node, which are global nodal coordinates, nodal slopes and their cross-sectional rotation about the center-line. The newly developed element is tested through four complex benchmarks. Comparing the ANCF14 results with theoretical and numerical results provided in other studies confirms the efficiency and accuracy of the proposed element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Audoly, B., Pomeau, Y.: Elasticity and geometry. In: Peyresq Lectures on Nonlinear Phenomena, pp. 1–35. World Scientific, Singapore (2000)

    Google Scholar 

  2. Bauchau, O.A., Hong, C.: Large displacement analysis of naturally curved and twisted composite beams. AIAA J. 25(11), 1469–1475 (1987)

    MATH  Google Scholar 

  3. Bauchau, O.A., Bottasso, C.L., Nikishkov, Y.G.: Modeling rotorcraft dynamics with finite element multibody procedures. Math. Comput. Model. 33(10–11), 1113–1137 (2001)

    MATH  Google Scholar 

  4. Bauchau, O.A., Betsch, P., Cardona, A., Gerstmayr, J., Jonker, B., Masarati, P., Sonneville, V.: Validation of flexible multibody dynamics beam formulations using benchmark problems. Multibody Syst. Dyn. 37(1), 29–48 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete elastic rods. ACM Trans. Graph. (TOG) 27, 63 (2008)

    Google Scholar 

  6. Betsch, P., Steinmann, P.: Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int. J. Numer. Methods Eng. 54(12), 1775–1788 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Bishop, R.L.: There is more than one way to frame a curve. Am. Math. Mon. 82(3), 246–251 (1975)

    MathSciNet  MATH  Google Scholar 

  8. Burke, W.L., Burke, W.L.: Applied Differential Geometry. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  9. Canavin, J., Likins, P.: Floating reference frames for flexible spacecraft. J. Spacecr. Rockets 14(12), 724–732 (1977)

    Google Scholar 

  10. Cardona, A., Geradin, M.: A beam finite element non-linear theory with finite rotations. Int. J. Numer. Methods Eng. 26(11), 2403–2438 (1988)

    MATH  Google Scholar 

  11. Dmitrochenko, O., Pogorelov, D.Y.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst. Dyn. 10(1), 17–43 (2003)

    MATH  Google Scholar 

  12. von Dombrowski, S.: Analysis of large flexible body deformation in multibody systems using absolute coordinates. Multibody Syst. Dyn. 8(4), 409–432 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Dowell, E., Traybar, J.J.: An experimental study of the nonlinear stiffness of a rotor blade undergoing flap, lag and twist deformations. Aerospace and Mechanical Science Report 1194 (1975)

  14. Dowell, E., Traybar, J.J.: An experimental study of the nonlinear stiffness of a rotor blade undergoing flap, lag and twist deformations. Aerospace and Mechanical Science Report 1257 (1975)

  15. Ebrahimi, M., Butscher, A., Cheong, H., Iorio, F.: Design optimization of dynamic flexible multibody systems using the discrete adjoint variable method. Comput. Struct. 213, 82–99 (2019)

    Google Scholar 

  16. Fan, W., Zhu, W.: An accurate singularity-free formulation of a three-dimensional curved Euler–Bernoulli beam for flexible multibody dynamic analysis. J. Vib. Acoust. 138(5), 051001 (2016)

    Google Scholar 

  17. Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, New York (2001)

    Google Scholar 

  18. Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318(3), 461–487 (2008)

    Google Scholar 

  19. Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8(3), 31016 (2013)

    Google Scholar 

  20. Ghiringhelli, G.L., Masarati, P., Mantegazza, P.: Multibody implementation of finite volume c beams. AIAA J. 38(1), 131–138 (2000)

    Google Scholar 

  21. Hanson, A.J., Ma, H.: Parallel transport approach to curve framing. Techreports-TR425 11, pp. 3–7, Indiana University (1995)

  22. Jonker, J.B., Meijaard, J.P.: A geometrically non-linear formulation of a three-dimensional beam element for solving large deflection multibody system problems. Int. J. Non-Linear Mech. 53, 63–74 (2013)

    Google Scholar 

  23. Lens, E.V., Cardona, A.: A nonlinear beam element formulation in the framework of an energy preserving time integration scheme for constrained multibody systems dynamics. Comput. Struct. 86(1–2), 47–63 (2008)

    Google Scholar 

  24. Leyendecker, S., Marsden, J.E., Ortiz, M.: Variational integrators for constrained dynamical systems. ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech.: Appl. Math. Mech. 88(9), 677–708 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Mikkola, A.M., Matikainen, M.K.: Development of elastic forces for a large deformation plate element based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 1(2), 103–108 (2006)

    Google Scholar 

  26. Nachbagauer, K., Gruber, P., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to static and linearized dynamic examples. J. Comput. Nonlinear Dyn. 8(2), 021004 (2013)

    Google Scholar 

  27. Olshevskiy, A., Dmitrochenko, O., Kim, C.W.: Three-dimensional solid brick element using slopes in the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 9(2), 021001 (2014)

    Google Scholar 

  28. Qiang, T., Yunqing, Z., Liping, C., Gang, Q.: Advances in the absolute nodal coordinate method for the flexible multibody dynamics. Adv. Mech. 40(2), 189–202 (2010)

    Google Scholar 

  29. Rankin, C., Brogan, F.: An element independent corotational procedure for the treatment of large rotations. J. Press. Vessel Technol. 108(2), 165–174 (1986)

    Google Scholar 

  30. Rohatgi, A.: Webplotdigitizer (2019). https://automeris.io/WebPlotDigitizer

  31. Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1(2), 149–188 (1997)

    MathSciNet  MATH  Google Scholar 

  32. Shabana, A.: Finite element incremental approach and exact rigid body inertia. J. Mech. Des. 118(2), 171–178 (1996)

    Google Scholar 

  33. Shabana, A.A.: An absolute nodal coordinate formulation for the large rotation and deformation analysis of flexible bodies. Technical Report, Department of Mechanical Engineering, University of Illinois at Chicago (1996)

  34. Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)

    MathSciNet  MATH  Google Scholar 

  35. Shabana, A.A.: Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics. Nonlinear Dyn. 16(3), 293–306 (1998)

    MathSciNet  MATH  Google Scholar 

  36. Shabana, A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2020)

    MATH  Google Scholar 

  37. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(4), 606–613 (2001)

    Google Scholar 

  38. Shigley, J.E.: Shigley’s Mechanical Engineering Design. Tata McGraw-Hill, New Delhi (2011)

    Google Scholar 

  39. Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49(1), 55–70 (1985)

    MATH  Google Scholar 

  40. Simo, J.C., Vu-Quoc, L.: On the dynamics of flexible beams under large overall motions–the plane case: Part I and Part II. ASME J. Appl. Mech. 53(4), 849–863 (1986)

    MATH  Google Scholar 

  41. Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part II: Computational aspects. Comput. Methods Appl. Mech. Eng. 58(1), 79–116 (1986)

    MATH  Google Scholar 

  42. Sonneville, V., Cardona, A., Brüls, O.: Geometrically exact beam finite element formulated on the special Euclidean group se (3). Comput. Methods Appl. Mech. Eng. 268, 451–474 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Trahair, N.S.: Flexural-Torsional Buckling of Structures. Routledge, London (2017)

    Google Scholar 

  44. Wang, W., Jüttler, B., Zheng, D., Liu, Y.: Computation of rotation minimizing frames. ACM Trans. Graph. (TOG) 27(1), 2 (2008)

    Google Scholar 

  45. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123(4), 614–621 (2001)

    Google Scholar 

  46. Yoo, W.S., Dmitrochenko, O., Park, S.J., Lim, O.K.: A new thin spatial beam element using the absolute nodal coordinates: application to a rotating strip. Mech. Based Des. Struct. Mach. 33(3–4), 399–422 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Ebrahimi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Putting Eq. (41) into Eq. (44) and defining \(\bar{\varepsilon } := \| \mathbf{r}' \|^{2} - 1\) we have

$$\begin{aligned} U_{\text{elastic}} &= \frac{1}{2} \int _{V} E \varepsilon _{11}^{2} + 4 G \varepsilon _{12}^{2} + 4 G \varepsilon _{13}^{2} \: dV = \frac{1}{2} \int _{V} E \varepsilon _{11}^{2} + G \tau _{\text{m}}^{2} \left ( \bar{y}^{2} + \bar{z}^{2} \right ) \: dV \\ &= \frac{E}{8} \int _{V} \left [ \bar{\varepsilon } + \left ( \gamma _{1} \bar{y} + \gamma _{2} \bar{z} \right )^{2} + 2 \| \mathbf{r}' \| \left ( \gamma _{1} \bar{y} + \gamma _{2} \bar{z} \right ) + \tau _{\text{m}}^{2} \left ( \bar{y}^{2} + \bar{z}^{2} \right ) \right ]^{2} \: dV \\ &+ \frac{G}{2} \int _{V} \tau _{\text{m}}^{2} \left ( \bar{y}^{2} + \bar{z}^{2} \right ) \: dV \\ &= \frac{E}{8} \int _{V} \left [ \bar{\varepsilon }^{2} + \left ( \gamma _{1} \bar{y} + \gamma _{2} \bar{z} \right )^{4} + 4 \| \mathbf{r}' \|^{2} \left ( \gamma _{1} \bar{y} + \gamma _{2} \bar{z} \right )^{2} + \tau _{\text{m}}^{4} \left ( \bar{y}^{2} + \bar{z}^{2} \right )^{2} \right ] \: dV \\ &+ \frac{E}{4} \int _{V} \left [ \bar{\varepsilon } \left ( \gamma _{1} \bar{y} + \gamma _{2} \bar{z} \right )^{2} + 2 \bar{\varepsilon } \| \mathbf{r}' \| \left ( \gamma _{1} \bar{y} + \gamma _{2} \bar{z} \right ) + \bar{\varepsilon } \tau _{\text{m}}^{2} \left ( \bar{y}^{2} + \bar{z}^{2} \right ) \right ] \: dV \\ &+ \frac{E}{4} \int _{V} \left [ 2 \| \mathbf{r}' \| \left ( \gamma _{1} \bar{y} + \gamma _{2} \bar{z} \right )^{3} + \tau _{\text{m}}^{2} \left ( \bar{y}^{2} + \bar{z}^{2} \right ) \left ( \gamma _{1} \bar{y} + \gamma _{2} \bar{z} \right )^{2} \right ] \: dV \\ &+ \frac{E}{4} \int _{V} \left [ 2 \| \mathbf{r}' \| \tau _{\text{m}}^{2} \left ( \bar{y}^{2} + \bar{z}^{2} \right ) \left ( \gamma _{1} \bar{y} + \gamma _{2} \bar{z} \right ) \right ] \: dV + \frac{G}{2} \int _{V} \tau _{\text{m}}^{2} \left ( \bar{y}^{2} + \bar{z}^{2} \right ) \: dV . \end{aligned}$$
(57)

Provided we have the same assumptions as those considered for deriving Eq. (45) and assuming the fourth moments of area

$$ \int \limits _{A} \bar{y}^{4} \: dA \approx 0, \: \int \limits _{A} \bar{z}^{4} \: dA \approx 0, \int \limits _{A} \bar{y}^{2} \bar{z}^{2} \: dA \approx 0 ,$$
(58)

Equation (57) reduces to

$$ \begin{aligned} U_{\text{elastic}} &= \frac{E}{8} \int _{V} \bar{\varepsilon }^{2} \: dV + \frac{G}{2} \int _{V} \tau _{\text{m}}^{2} \left ( \bar{y}^{2} + \bar{z}^{2} \right ) \: dV \\ &+ \frac{E}{4} \int _{V} \left [ \bar{y}^{2} \gamma _{1}^{2} \left ( 2 \| \mathbf{r}' \|^{2} + \bar{\varepsilon } \right ) + \bar{z}^{2} \gamma _{2}^{2} \left ( 2\| \mathbf{r}' \|^{2} + \bar{\varepsilon } \right ) + \bar{\varepsilon } \tau _{\text{m}}^{2} \left ( \bar{y}^{2} + \bar{z}^{2} \right ) \right ] \: dV \\ &= \frac{E}{8} \int _{V} \left (\| \mathbf{r} ' \|^{2} -1\right )^{2} \: dV \\ &+ \frac{E}{4} \int _{V} \bar{y}^{2} \gamma _{1}^{2} \left ( 3 \| \mathbf{r}' \|^{2} - 1 \right ) \: dV + \frac{E}{4} \int _{V} \bar{z}^{2} \gamma _{2}^{2} \left ( 3 \| \mathbf{r}' \|^{2} - 1 \right ) \: dV \\ &+ \frac{E}{4} \int _{V} \left ( \bar{y}^{2} + \bar{z}^{2} \right ) \tau _{m}^{2} \left ( \| \mathbf{r}' \|^{2}- 1 \right ) \: dV + \frac{G}{2} \int _{V} \left ( \bar{y}^{2} + \bar{z}^{2} \right ) \tau _{m}^{2} \: dV \\ &= \frac{EA}{8} \int _{0}^{l} \left (\| \mathbf{r} ' \|^{2} -1\right )^{2} \: dx \\ &+ \frac{EI_{z}}{4} \int _{0}^{l} \gamma _{1}^{2} \left ( 3 \| \mathbf{r}' \|^{2} - 1 \right ) \: dx + \frac{EI_{y}}{4} \int _{0}^{l} \gamma _{2}^{2} \left ( 3 \| \mathbf{r}' \|^{2} - 1 \right ) \: dx \\ &+ \frac{EJ_{t}}{4} \int _{0}^{l} \tau _{m}^{2} \left ( \| \mathbf{r}' \|^{2}- 1 \right ) + \frac{GJ_{t}}{2} \int _{0}^{l} \tau _{m}^{2} \: dx \: dx. \end{aligned} $$
(59)

Appendix B

Based on Eq. (18), one has \(\mathbf{r} = \mathbf{S} \mathbf{q}\) and consequently

$$ \begin{aligned} \frac{\partial \mathbf{r}'}{\partial \mathbf{q}} = \mathbf{S}' . \end{aligned} $$
(60)

Also using Eq. (16) and Eq. (20), \(\partial \tau _{m}/\partial \mathbf{q}\) can be analytically calculated everywhere along the element through

$$ \begin{aligned} \frac{\partial \tau _{m}}{\partial \mathbf{q}} = \frac{\partial \theta '}{\partial \mathbf{q}} = \bar{\mathbf{S}}'. \end{aligned} $$
(61)

According to Eq. (14), \(\partial \gamma _{1}/\partial \mathbf{q}\) and \(\partial \gamma _{2}/\partial \mathbf{q}\) are

$$ \begin{aligned} \gamma _{1} = \mathbf{t}' \cdot \mathbf{y} & \Longrightarrow \frac{\partial \gamma _{1}}{\partial \mathbf{q}} = \mathbf{y}^{\mathrm{T}} \frac{\partial \mathbf{t}'}{\partial \mathbf{q}}+ \mathbf{t}^{\prime \,\mathrm{T}} \frac{\partial \mathbf{y}}{\partial \mathbf{q}} , \\ \gamma _{2} = \mathbf{t}'\cdot \mathbf{z} & \Longrightarrow \frac{\partial \gamma _{2}}{\partial \mathbf{q}} = \mathbf{z}^{\mathrm{T}} \frac{\partial \mathbf{t}'}{\partial \mathbf{q}}+ \mathbf{t}^{\prime \,\mathrm{T}} \frac{\partial \mathbf{z}}{\partial \mathbf{q}}. \end{aligned} $$
(62)

Knowing \(\mathbf{t} = \mathbf{r}' / \| \mathbf{r}' \|\), for any point on the center-line, \(\mathbf{t}'\) and \(\partial \mathbf{t}' / \partial \mathbf{q}\) can be analytically computed via

$$ \begin{aligned} \frac{\partial \mathbf{t}}{\partial \mathbf{q}} &= \frac{1}{\| \mathbf{r}' \|} \left ( \mathbf{I} - \frac{\mathbf{r}' \mathbf{r}^{\prime \,\text{T}}}{\| \mathbf{r}' \|^{2}} \right ) \frac{\partial \mathbf{r}'}{\partial \mathbf{q}} , \\ \frac{\partial \mathbf{t}'}{\partial \mathbf{q}} &= \frac{1}{\| \mathbf{r}' \|} \left ( \mathbf{I} - \frac{\mathbf{r}' \mathbf{r}^{\prime \,\text{T}}}{\| \mathbf{r}' \|^{2}} \right ) \left ( \frac{\partial \mathbf{r}''}{\partial \mathbf{q}} - \frac{\mathbf{r}^{\prime \,\text{T}} \mathbf{r}''}{\| \mathbf{r}' \|^{2}} \frac{\partial \mathbf{r}'}{\partial \mathbf{q}} \right ) \\ &+ \frac{1}{\| \mathbf{r}' \|^{3}} \left ( \frac{\mathbf{r}^{\prime \,\text{T}} \mathbf{r}''}{\| \mathbf{r}' \|^{3}} \mathbf{r}' \mathbf{r}^{\prime \,\text{T}} - \mathbf{r}'' \mathbf{r}^{\prime \,\text{T}} - \mathbf{r}' \mathbf{r}^{\prime\prime \,\text{T}} \right ) \frac{\partial \mathbf{r}'}{\partial \mathbf{q}}, \end{aligned} $$
(63)

where \(\mathbf{r}' = \mathbf{S}' \mathbf{q}\) and \(\mathbf{r}'' = \mathbf{S}'' \mathbf{q}\). Using Eq. (12), \(\partial \mathbf{y} / \partial \mathbf{q}\) and \(\partial \mathbf{z} / \partial \mathbf{q}\) become

$$ \begin{aligned} \frac{\partial \mathbf{y}}{\partial \mathbf{q}} &= - \frac{\partial \theta }{\partial \mathbf{q}} \sin (\theta ) \mathbf{u} + \frac{\partial \theta }{\partial \mathbf{q}} \cos (\theta ) \mathbf{v} + \cos (\theta ) \frac{\partial \mathbf{u}}{\partial \mathbf{q}} + \sin ( \theta ) \frac{\partial \mathbf{v}}{\partial \mathbf{q}} , \\ \frac{\partial \mathbf{z}}{\partial \mathbf{q}} &= - \frac{\partial \theta }{\partial \mathbf{q}} \cos (\theta ) \mathbf{u} - \frac{\partial \theta }{\partial \mathbf{q}} \sin (\theta ) \mathbf{v} - \sin (\theta ) \frac{\partial \mathbf{u}}{\partial \mathbf{q}} + \cos ( \theta ) \frac{\partial \mathbf{v}}{\partial \mathbf{q}}, \end{aligned} $$
(64)

in which \(\mathbf{u}\), \(\mathbf{v}\) are obtained employing Algorithm 1. Their derivatives \(\partial \mathbf{u} / \partial \mathbf{q}\) and \(\partial \mathbf{v} / \partial \mathbf{q}\), therefore, can be found by Algorithm 2.

Algorithm 2
figure 24

Calculating \(\partial \mathbf{u} / \partial \mathbf{q}\) and \(\partial \mathbf{v} / \partial \mathbf{q}\) of the Bishop frame for a selected number of points along a spatial curve

Here \(\partial \mathbf{t}^{i-1} / \partial \mathbf{q} \times \mathbf{t}^{i}\) means the cross-product of each column of \(\partial \mathbf{t}^{i-1} / \partial \mathbf{q}\) by \(\mathbf{t}^{i}\) from right; and \(\mathbf{t}^{i-1} \times \partial \mathbf{t}^{i} / \partial \mathbf{q}\) is the cross-product of \(\mathbf{t}^{i-1} \) by each column of \(\partial \mathbf{t}^{i} / \partial \mathbf{q}\) from left.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, M., Butscher, A. & Cheong, H. A low order, torsion deformable spatial beam element based on the absolute nodal coordinate formulation and Bishop frame. Multibody Syst Dyn 51, 247–278 (2021). https://doi.org/10.1007/s11044-020-09765-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09765-7

Keywords

Navigation